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1 Introduction

Many economic policy institutions regularly publish forecasts of economic growth as part

of their assessment and as a foundation of their policy advice. The baseline forecasts are

surrounded by a varying degree of uncertainty and the discussion of both downside and upside

risks to the growth outlook is an essential part of macroeconomic forecasting. In recent years,

several institutions, starting with the International Monetary Fund (IMF), have been using

a new approach to quantify macro-financial risks to growth, which has become prominently

known as Growth-at-Risk (see e.g. Prasad et al., 2019). The present paper develops a new

empirical model to analyse macroeconomic risks stemming from changing macro-financial

conditions. In our proposed framework, the skewness of the predictive growth distribution, a

measure of unbalanced risks, is driven by such conditions. Through changes in the skewness,

macro-financial conditions therefore also impact to what extent growth is at risk.

In a seminal paper, Adrian et al. (2019) show that future downside risk varies significantly

depending on current financial conditions. Using quantile regression to study the dynamics of

the quantiles of the conditional US GDP growth distribution, they show that downside risk

increases as financial conditions become tighter.1 Inspired by the financial market concept of

Value-at-Risk, subsequent work has labeled the lower conditional p%-quantile of the predictive

growth distribution Growth-at-Risk (GaRp) (Adrian et al., 2021). Quantile regression has

become a standard tool to analyse risks to economic outcomes both in academia and in

policy institutions (Caldera Sánchez and Röhn, 2016; Giglio et al., 2016; Prasad et al., 2019).

While the approach has been used in earlier studies to evaluate the link between financial

variables and economic tail outcomes, Adrian et al. (2019) study the full conditional growth

distribution by fitting, in a second step, a parametric distribution over the predicted quantiles.

This makes it possible to obtain another common risk measure, namely expected shortfall

(on the downside) and expected longrise (on the upside), defined as the expected growth rate

conditional on the occurrence of a tail event (see also Adams et al., 2021).

Quantile regression offers a simple tool to understand asymmetries of the growth distribu-

tion and the role that financial variables play in shaping this distribution, but the approach

has been recently scrutinised. Several papers have questioned the ability of financial vari-

ables to inform the analysis of downside risk (e.g. Plagborg-Møller et al., 2020) or, at least,

the stability of the relationship between these conditions and future growth vulnerability

(Reichlin et al., 2020). Moreover, even if studies identify an impact of financial variables

on macroeconomic risks, the question remains whether this can benefit out-of-sample fore-

casting. Brownlees and Souza (2021) show that standard time-varying volatility (GARCH)

1Extending this analysis to a larger set of advanced economies, Adrian et al. (2021) highlight an intertemporal
trade-off between short-term benefits and medium-term risks of loose financial conditions.
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models compete well with quantile regressions in forecasting Growth-at-Risk and often out-

perform those despite the fact that GARCH forecasts are only based on growth data. In

addition, Carriero et al. (2020a) present evidence that multivariate time series (VAR) models

with stochastic volatility – commonly used tools for both structural macroeconomic analysis

and forecasting – effectively capture time-varying risks to growth. While also in these models

financial conditions play an important role, they conclude that asymmetric conditional dis-

tributions, implied by the results of Adrian et al. (2019), do not have to be incorporated into

empirical models to accurately model the quantiles of interest.

This paper revisits the question whether conditional skewness, where a negative (positive)

skewness value is interpreted as prevalent macroeconomic downside (upside) risk, is a relevant

empirical feature that could help to improve Growth-at-Risk and expected shortfall/longrise

(ES/EL) forecasts.2 Our proposed empirical model measures such asymmetric risk character-

istics of the conditional GDP growth distribution as a function of exogenous variables. The

approach includes both time-varying volatility, which has been shown crucial for forecasting

accuracy (see e.g. D’Agostino et al., 2013), and the possibility to evaluate the effect of macro-

financial conditions on the presence of risks. The latter further helps to improve forecasting

results and increases the applicability in a policy environment, where the goal is to identify

sources of risk, in addition to predicting it.

Methodologically, the model extends the stochastic volatility model with time-varying

skewness developed in Iseringhausen (2020) for a single time series of daily exchange rate re-

turns, to a panel of countries using low-frequency macroeconomic data. To capture evolving

risks, the shocks are assumed to follow the noncentral t-distribution where the asymmetry

parameter of this distribution is a function of exogenous variables, namely macro-financial

conditions. The model is estimated by an extension of the well-known Bayesian approach

for stochastic volatility models developed in Kim et al. (1998). This empirical model can be

seen as a stochastic version of existing approaches that model the scale and shape parameters

of a distribution as a purely deterministic function of explanatory variables. The first con-

tributions in this literature are extensions of GARCH-type models to allow for higher-order

dynamics (Hansen, 1994; Harvey and Siddique, 1999). Recently, Plagborg-Møller et al. (2020)

use a model with skewed-t innovations where the parameters of the distribution are driven

by an aggregate economic and a financial factor. Their results suggest that for US output

growth, moments beyond the conditional mean cannot be pinned down precisely in such a

framework. In contrast, in a more general score-driven version of this model, Delle Monache

et al. (2020) find both volatility and skewness of US growth to vary significantly over time. The

2Contributions providing theoretical support for a time-varying degree of asymmetry over the business cycle
include, for example, Orlik and Veldkamp (2014), Salgado et al. (2019), and Jensen et al. (2020).
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before-mentioned approaches, including the one developed in this paper, can also be viewed

as alternatives to Markov-switching approaches (e.g. Hamilton, 1989; Morley and Piger, 2012;

Caldara et al., 2020) or threshold models (e.g. Alessandri and Mumtaz, 2017) to allow for

non-linear effects of certain determinants on the distribution of macroeconomic outcomes.

When applying the proposed model to a panel of 11 OECD countries over the period

1973:Q1–2019:Q4, we obtain the following results. First, in-sample financial conditions have

a sizable impact on the skewness of the predictive growth distribution, which displays large

time variation and is skewed to the left in most countries. In particular, tightening financial

conditions are related to elevated future near-term downside risk, but this relationship reverses

at longer horizons. Second, including a financial conditions index (FCI) in the process of the

model’s asymmetry parameter can improve average GaR and ES/EL forecasts compared to

alternative approaches based on quantile regression or a GARCH model. For downside risk,

the gains occur especially at short horizons up to two quarters ahead, and for upside risk

across horizons. Lastly, including a measure of economic and policy uncertainty next to the

FCI, or some of the prominent components of the index separately, the term spread or house

price growth, does generally not improve or only adds very little to the accuracy of the model.

The remainder of the paper is structured as follows: Section 2 introduces a panel stochastic

volatility model with time-varying skewness, which is driven by macro-financial conditions.

Moreover, the estimation of the model using Bayesian methods is discussed. Section 3 presents

the results both in-sample and when forecasting macroeconomic risk out-of-sample. Section

4 concludes. The appendix contains further methodological details and additional results.

2 A panel model with time-varying volatility and skewness

This section introduces an empirical specification to estimate the predictive distribution of

GDP growth for a panel of countries. The model features time-varying skewness, where

asymmetry is driven by a set of explanatory variables. It is an extension of the stochastic

volatility – stochastic skewness model of Iseringhausen (2020), and the presentation of both

the specification and the estimation approach closely follows this paper.

2.1 Empirical specification

The observed dependent variable y is assumed to be generated by the following panel stochas-

tic volatility (SV) specification,

yit = µit + ehit/2εit, i = 1, ..., N, t = 1, ..., T, (1)

hit = hi,t−1 + ηit, ηit ∼ N (0, σ2h), (2)
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where yit is GDP growth in country i and period t and µit is the conditional mean, which is

a linear function specified later with the corresponding vector of coefficients labeled γi. The

country-specific (log-)volatility of growth shocks, denoted hit, is assumed to evolve according

to a random walk with innovation variance (‘volatility of volatility’) σ2h, that is pooled across

countries. If the shocks εit are assumed to follow the standard normal distribution, the model

is a panel version of the well-known standard normal SV model (e.g. Kim et al., 1998).

To analyse time-varying asymmetries in the growth distribution, we deviate from the as-

sumption of Gaussian shocks and instead assume that these follow the (de-meaned) noncentral

t-distribution,

εit = uit − E[uit], with uit ∼ NCT (ν, δit), and E[uit] = c11(ν)δit, if ν > 1. (3)

The shape of the noncentral t-distribution is driven by two parameters, the degrees of free-

dom ν, that are assumed homogeneous across countries, and the time-varying noncentrality

parameter δit. The functional form of the coefficient c11(ν) can be found in Appendix A. For

δ > 0, this distribution is skewed to the right, whereas for δ < 0 the distribution is skewed

to the left. The noncentral t-distribution has been introduced into a univariate stochastic

volatility framework by Tsiotas (2012). Iseringhausen (2020) extends this model to allow for

a time-varying asymmetry parameter δt either modeled as a stationary autoregressive pro-

cess, or alternatively, as a random walk. Using the model, Iseringhausen (2020) documents

time-varying skewness, which can be interpreted as changing downside risk, in daily exchange

rate returns. This paper imposes a different structure on the evolution of the asymmetry

parameter by assuming that δit is driven explicitly by a vector of explanatory variables,

δit = φδi,t−1 +Xitβ + ωit, ωit ∼ N (0, σ2δ ), |φ| < 1, (4)

where Xit is of dimension 1×K and contains the explanatory variables including a constant,

and β is the corresponding K × 1 vector of coefficients, pooled across countries. Since the

relation between δit and Xit is likely not exact, a zero mean error term ωit with pooled variance

σ2δ is added.

Since the model will be estimated by Bayesian methods, the specification of this stochastic

volatility model with time-varying skewness is completed by assuming the following prior

distributions for the parameters σ2h, σ2δ , ν, β and φ:

σ2h ∼ IG(ch0, Ch0), σ2δ ∼ IG(cδ0, Cδ0), ν ∼ U(0, ν̄), (5)

β ∼ N (β0, σ
2
β0IK), φ ∼ T N (−1,1)(φ0, σ

2
φ0).
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To obtain closed-form expressions of the model-implied variance and skewness for each country

and period, we rely on the result of Hogben et al. (1961) stating that the central moments of a

noncentral t-distributed random variable, X ∼ NCT (ν, δ), can be written as polynomials of δ

whose coefficients are functions of ν. Specifically, Hogben et al. (1961) derive expressions for

the second and third central moment of the noncentral t-distribution, which in turn can be

used to obtain formulas for the time-varying variance and skewness of GDP growth implied

by the panel model introduced in this section,

V ar[yit|hit, δit, ν] = ehit
[
c22(ν)δ2it + c20(ν)

]
, if ν > 2, (6)

Skew[yit|δit, ν] =
c33(ν)δ3it + c31(ν)δit

[c22(ν)δ2it + c20(ν)]3/2
, if ν > 3. (7)

The functional expressions of the coefficients c20(ν), c22(ν), c31(ν) and c33(ν) can again be

found in Appendix A.

We want to point out an important aspect of the presented specification. As already

discussed in Iseringhausen (2020), the error term in Equation (3) has zero mean but is not

standardised to have unit variance, implying that δit appears in the conditional variance

equation. Put differently, the scaling factor hit is not equal to the conditional log-variance.

This has practical reasons related to the implementation of the proposed MCMC algorithm.

Specifically, it would no longer be possible using standard algebra to derive a state space

representation with an observation equation that is linear in δit, which is required to apply

the proposed sampling algorithm.3 While the current model specification implies more com-

plicated formulas for the conditional variance and conditional skewness, this specification has

great advantages in terms of practical implementation. Moreover, conditional variance and

skewness can still move independently since two state variables, hit and δit, are driving the

two moments. For later use, we define y = (y1, ..., yT )′, µ = (µ1, ..., µT )′, h = (h1, ..., hT )′,

δ = (δ1, ..., δT )′, and λ = (λ1, ..., λT )′, where each element yt, µt, ht, δt, and λt is a N × 1

vector. Finally, define X = (X1, ..., XN )′ where each Xi is of dimension T ×K.

2.2 Bayesian estimation: building blocks and MCMC algorithm

The model developed in this paper is estimated using Markov Chain Monte Carlo (MCMC)

methods. Before outlining the detailed algorithm, a few preliminary aspects need to be

discussed, crucial for the derivation of some of the conditional posterior distributions that

constitute the key components of the Gibbs sampling algorithm (see also Iseringhausen, 2020,

for more details).

3See Equation (B-17) in Appendix B.
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Location-scale mixture representation of the noncentral t-distribution

First, in order to avoid working directly with the complex probability density function of

the noncentral t-distribution, we make use of the fact that this type of distribution can be

written as a location-scale mixture of normal distributions (Johnson et al., 1995; Tsionas,

2002). Specifically, if the random variable X follows the noncentral t-distribution, it has the

following representation,

X =
√
λ(z + δ), where λ ∼ IG(ν/2, ν/2) and z ∼ N (0, 1). (8)

When applying Equation (8) to the time-varying skewness model, the observation equation,

obtained by merging Equation (1) and (3), can be written as,

yit = µit + ehit/2εit = µit + ehit/2
(√

λit(zit + δit)− c11(ν)δit

)
, (9)

where again λit ∼ IG(ν/2, ν/2) and zit ∼ N (0, 1). This representation of the model can

be viewed as a type of data augmentation in the sense of Tanner and Wong (1987), where

introducing the additional latent variable λit facilitates the derivation of an observation equa-

tion that is linear in δit. This is essential for the implementation of the MCMC algorithm

presented later in this section.

Augmented auxiliary sampler

Having discussed above how to obtain linearity in δit, we now turn towards how to linearise

the model for the purpose of sampling the unobserved (log-)volatility hit. The approach taken

here directly follows Iseringhausen (2020), which extends the so-called auxiliary sampler for

the estimation of the Gaussian stochastic volatility model developed by Kim et al. (1998),

to the noncentral-t model with a time-varying asymmetry parameter. Consider the following

transformation of the previously derived observation Equation (9), obtained after squaring

both sides and taking the natural logarithm,

log
(
(yit − µit)2 + c

)
= hit + ε̃it, (10)

c = 10−6 is an offset constant, and where the transformed error term ε̃it is

ε̃it = log(ε2it) = log

[(√
λit(zit + δit)− c11(ν)δit)

)2]
. (11)

This transformation allows hit to now enter the model in a linear manner. If the error term in

Equation (10) would be Gaussian, standard algorithms for linear Gaussian state space models,
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based on the Kalman filter, could be used to estimate h. The non-normal distribution of ε̃it

requires an extension to the standard estimation approach. We follow Iseringhausen (2020),

who based on the idea developed in Kim et al. (1998), approximates the log-noncentral-t-

squared distribution of ε̃it by a mixture of normal distributions,

f(ε̃it|ν, δit) =

M∑
j=1

qj(ν, δit)fN (ε̃it|mj(ν, δit), v
2
j (ν, δit)). (12)

In this expression qj(ν, δit) is the corresponding probability of a specific normal distribution

with mean mj(ν, δit) and variance v2j (ν, δit). In contrast to Kim et al. (1998), where a single

mixture distribution is sufficient to approximate the target distribution, here one needs a large

grid of mixture distributions since the specific target distribution to be approximated depends

on the values of ν and δit. To this end, a large number of mixture distributions is ‘pre-fitted’,

such that this does not involve any additional computational costs in the estimation. In setting

the number of mixture components M , we follow Omori et al. (2007) and Iseringhausen (2020)

and choose M = 10. Additional details on this approach can be found in Iseringhausen (2020).

The mixture representation in Equation (12) can be reformulated based on the probabilities

of the Gaussian components,

ε̃it|sit = j, ν, δit ∼ N
(
mj(ν, δit), v

2
j (ν, δit)

)
, P r(sit = j|ν, δit) = qj(ν, δit), (13)

where the mixture indicators sit ∈ [1, ..., 10] are unobserved and can be sampled jointly with

the remaining parameters.

MCMC algorithm

Equipped with these two statistical tools, we are now ready to develop a Gibbs sampler that

simulates draws from the intractable joint and marginal posterior distributions of the pa-

rameters and unobserved states by only exploiting conditional distributions. In some cases,

where these are not members of standard distributional families, a Metropolis-Hastings step

is added to the respective block of the sampler. Appendix B contains a more detailed presen-

tation of the MCMC approach. The algorithm is an adjusted version of the one developed in

Iseringhausen (2020) and loops over the following blocks:

1. Conditional mean coefficients: draw γ from p(γ|y, h, δ, λ, ν);

2. Mixture indicators: draw s from p(s|y, h, δ, ν, γ);

3. (Log-)volatility: draw h from p(h|y, s, δ, ν, γ, σ2h);

4. Location-scale weights: draw λ from p(λ|y, h, δ, ν, γ);

7



5. Degrees of freedom: draw v from p(ν|λ);

6. Non-centrality parameter: draw δ from p(δ|y, h, λ, ν, γ,X, φ, β, σ2δ );
7. Coefficients in δ-equation: draw φ and β from p(φ, β|δ,X, σ2δ );
8. Innovation variances: draw σ2h from p(σ2h|h) and σ2δ from p(σ2δ |δ,X, φ, β).

In terms of practical implementation, the blocks 1, 2, 3, 4, and 6 are executed country-by-

country while blocks 5, 7, and 8 draw the pooled components. Block 1 generates a draw of the

conditional mean µ, which in our application has a linear specification and includes a constant

and lagged values of the dependent variable. Specifically, we sample the corresponding k × 1

vector of country-specific regression coefficients γi as in Tsionas (2002). The conditional mean

is then simply retrieved as µit = Xµitγi, where Xµit is of dimension 1 × k and contains the

conditional mean regressors. Block 2 samples the mixture indicators via the inverse-transform

method (Kim et al., 1998). The different mixture components for each period t, each country

i and each Gibbs iteration j are selected depending on the corresponding (rounded) values of

νj and δi,t,j . The (log-)volatilities h (block 3) and noncentrality parameters δ (block 6) are

sampled using sparse matrix algorithms (Chan and Hsiao, 2014; Chan and Jeliazkov, 2009)

that can yield large computational efficiency gains compared to more standard algorithms for

estimating linear Gaussian state space models (e.g. Carter and Kohn, 1994). The conditional

posterior distributions of λ (block 4) and ν (block 5) are non-standard and a Metropolis-

Hastings step needs to be included as described in Tsionas (2002) and Chan and Hsiao

(2014), respectively. Sampling the coefficients of the asymmetry process, φ and β (block 7)

is relatively standard as they follow (truncated) normal distributions, where an acceptance-

rejection step is included to ensure that φ remains in the stationary region. Finally, the

innovation variances σ2h and σ2δ (block 8) follow inverse-gamma distributions and sampling is

standard. The algorithm is initialised with an arbitrary set of starting values.

After iterating the algorithm for an initial burn-in period of length B followed by another

J iterations, the sequence of draws (B + 1, ..., J) can be taken as a sample from the joint

posterior distribution f(h, δ, λ, ν, γ, φ, β, σ2h, σ
2
δ |y,X). In the following analysis, we discard the

initial 20,000 draws as burn-in to ensure convergence to the ergodic distribution. Afterwards,

we iterate the MCMC algorithm for another 2,000,000 times, keeping only every 20th draw.4

The results presented in the following sections are thus based on 100,000 effective draws.

In order to evaluate the performance of this MCMC algorithm, Appendix C presents a

small Monte Carlo simulation exercise. In particular, the results show that the algorithm

can successfully recover the true data generating model parameters. Moreover, Appendix C

comments on the convergence properties and efficiency of the sampler.

4Applying this ‘thinning’ has only computational reasons, i.e. memory limits (see Gelman et al., 2011).
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3 Results

After describing the dataset, this section proceeds with an in-sample predictive analysis to 
measure the impact of macro-financial conditions on the conditional growth distribution. 
Finally, it contains an out-of-sample forecasting exercise to compare the proposed model with 
alternative approaches from the literature.

3.1 Data

The dataset used for the analysis is a balanced panel of 11 OECD countries over the period 
1973:Q1–2019:Q4. The countries included are: Australia (AU), Canada (CA), France (FR), 
Germany (DE), Italy (IT), Japan (JP), Spain (ES), Sweden (SE), Switzerland (CH), United 
Kingdom (GB), and United States (US). Economic growth is measured by the quarter-over-

quarter growth rate of seasonally adjusted real GDP obtained from the OECD database.

The country-specific variables entering the state equation of the asymmetry parameter are 
selected based on the existing literature. We consider a Financial Conditions Index (FCI), 
which is calculated by the IMF (2017) until 2016:Q4 from a large set of domestic and global 
financial indicators using the common factor approach of Koop and Korobilis (2014). FCIs 
have emerged in the literature as the single most important determinant of Growth-at-Risk 
(see, for example, Brownlees and Souza, 2021). The IMF’s methodology to compute the FCI 
has been simplified, and the set of underlying components somewhat changed in IMF (2018), 
but this revised series only starts in 1996. To obtain a longer sample, we splice both series 
in 2016:Q4 by re-scaling the new series and removing a potential level difference so that both 
series have identical values in 2016:Q4.

In addition, we include variables that have been among the more promising predictors 
considered in the study of Brownlees and Souza (2021) or that are regularly drawing the 
attention of policy-makers: the term spread (TS) and real house price growth (HP) both 
obtained from the OECD, and an index of economic and policy uncertainty (WUI) following 
Ahir et al. (2018).5 All variables are standardised by subtracting their panel-wide mean and 
dividing by their panel-wide standard deviation to facilitate a straightforward interpretation 
and comparison of the estimated coefficients. Moreover, this also allows for a sensible prior 
configuration that is uniform across variables.

For around half of the countries, there are some missing values for the FCI and the term 
spread. We follow Brownlees and Souza (2021) in imputing these observations and take the

5The inclusion of an uncertainty measure is also motivated by the findings in Hengge (2019) and Jovanovic
and Ma (2020) who, using the forecast error based uncertainty measure of Jurado et al. (2015), find a strong
effect of uncertainty on the lower quantiles of the conditional US output (GDP/IP) growth distribution.
Unfortunately, this measure of uncertainty is not readily available for all countries in our sample.
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imputed values directly from the dataset made available by these authors. Details on the

dataset including the imputation procedure (see also Brownlees and Souza, 2021), as well as

time series plots of the explanatory variables, can be found in Appendix D. As a final remark,

we try to limit the distortions due to imputed values by only including advanced economies

for which an individual FCI is available for at least most of the sample period.

3.2 In-sample parameter estimates and unobserved components

The presentation of the results starts with an in-sample analysis of the predictive growth

distribution. In this section, for the sake of brevity, we focus mostly on results for one-step-

ahead predictions (h = 1), but also discuss selected important insights for longer horizons

(h = 4 and h = 8). The in-sample results presented here stem from a direct multi-step-ahead

analysis using the model shown in Equations (1)-(4), where the dependent variable yit is

simply shifted by h periods.6 Thus, as in Brownlees and Souza (2021), throughout the paper

we predict the h-step-ahead quarter-over-quarter growth rate of real GDP instead of average

cumulative growth (for h > 1) as in Adrian et al. (2019). The conditional mean specification

µi,t+h|t includes a constant, current GDP growth in period t and three additional lags.7

The prior configurations used for both the in-sample and the out-of-sample analysis can

be considered largely uninformative. For the regression coefficients in the mean equation and

the asymmetry equation, we use γi ∼ N (0, 10 × Ik), φ ∼ N (0, 10), and β ∼ N (0, 10 × IK).

The priors on the innovation variances σ2h and σ2δ are taken from Kim et al. (1998), σ2 ∼
IG(2.5, 0.025). This implies a prior expectation of 0.017 and a prior standard deviation of

0.024. The upper bound of the degrees of freedom parameter is set to ν̄ = 30 since for this

value, the (noncentral) t-distribution becomes nearly indistinguishable from the standard

normal distribution.

Before turning to the analysis of skewness, Figure 1 shows the estimated model-implied

variance of the one-step-ahead predictive distribution for each country, calculated using Equa-

tion (6). These plots clearly show the well-known Great Moderation, i.e. a significant decline

in output volatility in most industrialised economies with some differences in the timing and

magnitude across countries (Stock and Watson, 2003; Summers, 2005; Del Negro and Otrok,

2008). Some visible spikes in volatility, which contrast with the even smoother volatility es-

timates that are usually obtained from SV models when applied to macroeconomic data, are

6The term predictive in the in-sample analysis refers to the timing of the variables in the conditional mean and
asymmetry equation. For the (log-)volatility series h, we report the actual estimated posterior mean for each
period t + h. Alternatively, Carriero et al. (2020a) present a way to account for some degree of uncertainty
around the path of the latent volatility series in an in-sample predictive analysis. Finally, the AR term in
δi,t+h is always lagged by one instead of h periods, i.e. t+ h− 1.

7The autoregressive conditional mean specification does not reduce the effective sample size since quarterly
growth rates for the 11 countries are available for a sufficient number of periods prior to 1973:Q1.
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the result of the fact that the explanatory variables in the asymmetry equation also affect the

conditional variance as explained in the previous section.

Figure 1: Variance of in-sample one-step-ahead predictive distribution

Estimated variance (posterior mean) 95% HDI

Figure 2 presents one of the key results of the paper, the estimated conditional skewness of

the one-step-ahead predictive GDP growth distribution across countries. First, there is signif-
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icant movement in the evolution of the skewness series over time and across countries. For the

US, Adrian et al. (2019) present similar evidence using quantile regression and Delle Monache

et al. (2020) based on their score-driven time-varying skew-t model. Second, for most coun-

tries and periods, skewness is negative, indicating that the left tail of the one-step-ahead

predictive growth distribution is usually longer than the right tail.

Figure 2: Skewness of in-sample one-step-ahead predictive distribution

Estimated skewness (posterior mean) 95% HDI
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This is a first piece of evidence that suggests the existence of sizable downside risk is

a common phenomenon across countries and over time. In particular, during the Great

Recession the left tails of conditional growth distributions were pronounced pointing towards

a highly vulnerable macroeconomic environment. Importantly, the pooled approach chosen in

this paper to estimate the asymmetry coefficients, including the intercept, could mask cross-

country heterogeneity but is necessitated by the relatively low frequency of macroeconomic

time series compared to, for example, financial market data.

To analyse the role of financial conditions and uncertainty in determining the shape of the

predictive growth distribution, Table 1 presents the estimated model parameters, with the

exception of the conditional mean coefficients. We start by discussing the (pooled) coefficients

on the explanatory variables in the asymmetry process. The exogenous variables are assumed

to impact the asymmetry coefficient δ in a linear fashion according to Equation (4). However,

conditional skewness is a non-linear function of δ determined by Equation (7). Therefore, to

interpret the direct effect of the regressors on skewness, we report the marginal effects at the

average (MEA). Since the data are standardised, these represent the effect of a one standard

deviation increase in the respective variable on skewness assuming that all variables are at

their sample means. The MEAs are calculated by plugging Equation (4) into the skewness

Equation (7) and obtaining the first derivative of this expression w.r.t. the variable of interest.

This derivative is then evaluated at the sample means of X.

When looking at the estimated coefficients for the one-step-ahead analysis (h = 1), the

estimates broadly confirm the findings of previous work and suggest an important role of

financial conditions in shaping the growth distribution. Worsening financial conditions, as

reflected in an increase of the FCI, are linked to short-term downside risk, i.e. the predictive

growth distribution becomes skewed to the left (Adrian et al., 2019). Overall, the results

on the remaining variables are ambiguous but do generally not support a prominent role of

those in explaining downside risk. However, this does not imply that they are irrelevant as

the term spread and house price growth are also among the many factors from which the FCI

is extracted. Based on the prominent role that these variables play in a policy environment

coupled with the findings in Brownlees and Souza (2021), we therefore also include them as

separate determinants.

At the short horizon (h = 1), the term spread does not seem to predict downside risk.

Interestingly, in the very near term, house price increases seem to go along with upside risks

to the economy indicating that such increases are usually a phenomenon during expansionary

periods. As mentioned before, the overall signal of these variables is difficult to assess due to

their additional indirect impact through the FCI. The results on economic and policy uncer-

tainty are counter-intuitive, as a more uncertain environment in the current quarter relates
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to a somewhat higher chance of an upside growth surprise in the next quarter. However, pos-

terior dispersion is very large. This broadly aligns with the results reported in Hengge (2019)

showing that economic policy uncertainty has limited power to explain growth vulnerabilities.

Table 1: In-sample posterior parameter estimates and accuracy measures

h = 1 h = 4 h = 8

Mean Perc2.5 Perc97.5 Mean Perc2.5 Perc97.5 Mean Perc2.5 Perc97.5

FCI β -0.85 -1.49 -0.25 0.30 -0.42 0.99 0.76 0.07 1.74

MEA -1.00 -2.70 -0.20 0.11 -0.13 0.51 0.42 0.02 1.31

TS β 0.01 -0.46 0.45 0.40 -1.28 1.40 0.50 -0.29 1.33

MEA 0.04 -0.52 0.72 0.19 -0.21 0.84 0.29 -0.09 1.04

HP β 0.31 -0.21 0.82 0.37 -0.44 1.29 0.01 -0.65 1.06

MEA 0.42 -0.17 1.57 0.13 -0.13 0.58 -0.03 -0.49 0.39

WUI β 0.34 -0.14 0.91 0.52 -0.27 1.57 0.04 -0.53 0.74

MEA 0.37 -0.18 1.18 0.14 -0.13 0.45 0.00 -0.41 0.34

δt+h−1 φ -0.39 -0.78 0.13 -0.25 -0.80 0.43 -0.21 -0.76 0.33

Const. β -1.05 -2.07 -0.40 -1.47 -3.24 -0.50 -1.41 -2.89 -0.47

σ2h 0.040 0.024 0.062 0.069 0.042 0.102 0.057 0.032 0.089

σ2δ 0.016 0.004 0.055 0.017 0.004 0.061 0.017 0.004 0.068

ν 9.85 6.19 16.58 19.56 9.10 29.53 15.45 8.10 28.15

DQuc DQhits TL DQuc DQhits TL DQuc DQhits TL

Growth-at-Risk5% 100 100 0.076 100 91 0.079 91 100 0.080

Growth-at-Risk95% 100 100 0.067 82 91 0.069 100 100 0.068

EKP VaR-ES score EKP VaR-ES score EKP VaR-ES score

Expected shortfall5% 0.171 0.355 0.177 0.382 0.173 0.387

Expected longrise95% 0.147 0.620 0.215 0.629 0.191 0.629

Note: This table contains the means and percentiles of the parameters’ posterior distributions. MEA refers to the marginal

effect of an explanatory variable on the skewness of the predictive distribution evaluated at the average values of the remaining

regressors. Under DQuc and DQhits we report the share of country series for which adequacy of the quantile forecasts is not

rejected at the 5% level using two versions of the dynamic quantile test developed in Engle and Manganelli (2004). For details

see Brownlees and Souza (2021) and also Section 3.3. TL is the tick loss, EKP refers to the expected shortfall precision measure

of Embrechts et al. (2005), and the VaR-ES score is the measure developed in Fissler et al. (2015).

At the one-year-ahead horizon (h = 4), tightening financial conditions, as measured by

the FCI, do no longer appear to signal downside risks. The posterior mean changes sign

while the 95% posterior interval includes zero. At the two-year-ahead horizon (h = 8),

this reversed effect becomes stronger and the posterior interval does no longer include zero.

Qualitatively, these results support the findings of Adrian et al. (2021), i.e. the existence of a

trade-off between short-term benefits (risks) and medium-term risks (benefits) when loosening

(tightening) financial conditions. In addition, with an increasing horizon the term spread

seems to play a more important role in predicting risks and the posterior mean of the coefficient

has the expected sign. This supports the findings in Estrella and Hardouvelis (1991), who

show that the slope of the yield curve can help to predict recessions around one to two years

ahead. Again, the posterior distribution remains relatively wide. Finally, asymmetries of the
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predictive growth distribution appear to be moderately negatively autocorrelated. In line

with Figure 2, the estimated intercept of the asymmetry process is clearly negative.

Table 1 also reports various measures to assess the accuracy of GaR and ES/EL predic-

tions. Throughout the paper we focus on the 5% (95%) quantile to analyse downside (upside)

risk. Formally defined, GaR is the p%-quantile of the predictive growth distribution8,

Pr(yi,t+h ≤ GaRpi,t+h|t) = p. (14)

Based on these quantiles, ES/EL are then defined as the conditional expectation of the dis-

tribution beyond the GaR level,

ESpi,t+h|t = E(yi,t+h|yi,t+h ≤ GaRpi,t+h|t), (15)

ELpi,t+h|t = E(yi,t+h|yi,t+h ≥ GaRpi,t+h|t).

The reported accuracy measures are also used in the out-of-sample forecasting exercise and

will be explained in more detail in the next section. They are reported here to allow for a

comparison of both in-sample and out-of-sample results.

To conclude the in-sample analysis, Figure 3 shows the model-implied one-step-ahead

Growth-at-Risk and expected shortfall/longrise values over time along with the realised

growth rates. To generate these, in each MCMC iteration, we draw from the one-step-ahead

growth distribution of each country and period, and compute the relevant quantiles (GaR)

and expected values beyond these quantiles (ES/EL) using all these draws. This presentation

of the results complements and merges the insights from the previously shown volatility and

skewness Figures 1 and 2. Based on a visual inspection, the model seems to capture the

dynamics of the conditional GDP growth distribution appropriately in most countries. While

both upside and downside risk vary over time in most countries, downside risk seems to be

generally more volatile, which is in line with the results reported in Adrian et al. (2019).9

It is worth discussing this point a bit further. In the original Adrian et al. (2019) pa-

per that uses quantile regression, a larger variability of downside risk relative to upside risk

emerges since financial conditions affect the lower quantiles of the predictive growth distribu-

tion stronger than the upper ones. In our modeling approach, this result stems from the fact

that financial conditions directly affect the skewness of the predictive growth distribution.

Notably, Carriero et al. (2020a) show that obtaining this result does not require a model

that produces asymmetric conditional growth distributions. In particular, a symmetric VAR

8While GaR usually refers to the lower quantile, for simplicity, here we also use the label for the upper quantile.
9The average standard deviation across countries for downside (upside) risk, as shown in Figure 3, is 0.59
(0.52) and 0.78 (0.64) for Growth-at-Risk and expected shortfall/longrise, respectively.
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model with time-varying volatility that allows for simultaneous shifts in the conditional mean

and variance can also produce this result. They note that including financial conditions in

the system is still crucial for observing larger variability of downside risk than of upside risk.

Figure 3: In-sample one-step-ahead Growth-at-Risk and expected shortfall/longrise

GaR5%/GaR95% ES5%/EL95% Realised growth Avg. growth

However, the possibility to observe this one particular pattern in both models with sym-
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metric and asymmetric conditional distributions does not imply that the latter is an irrelevant

characteristic when trying to fit empirical models to GDP growth data. Specifically, the next

section will focus on whether the specification suggested in this paper, which models the con-

ditional skewness of the growth distribution as a function of macro-financial conditions, can

help to improve the out-of-sample forecasting accuracy compared to alternative approaches.

3.3 Out-of-sample forecasting of macroeconomic risks

This section uses the model proposed in this paper along with existing approaches from

the literature to forecast Growth-at-Risk and expected shortfall/longrise out-of-sample. We

estimate the models initially over the period 1973:Q1–1984:Q4 and then generate the h-

step-ahead, h ∈ {1, ..., 4}, GaRp/ESp/ELp forecasts.10 Starting from 1985:Q1, we then

re-estimate the models by extending the in-sample period by N observations in each quarter

and generating a new set of forecasts. This recursive procedure is continued until the end of

the sample. As a result, we obtain for each combination of model, forecasting horizon, and

quantile level, a country-specific set of GaR and ES/EL forecasts of size T hoos = 140− (h−1).

Competing models and accuracy measures

The competitors used in the out-of-sample forecasting exercise are prominent models dis-

cussed in the literature: the quantile regression approach put forward by Adrian et al. (2019)

and one of the generalised autoregressive conditional heteroscedasticity (GARCH) models

applied in Brownlees and Souza (2021).11 Lastly, we also include as a benchmark the ‘naive’

historical forecast and a symmetric version of the model proposed in this paper, i.e. one with-

out skewness. The conditional mean for the GARCH and SV models includes a constant,

current GDP growth and three additional lags.

Historical benchmark

As a simple benchmark to forecast Growth-at-Risk and expected shortfall/longrise, we use

the unconditional historical measure. In this case, the h-step-ahead GaR and ES/EL forecast

for period t+h is simply the empirical quantile and the empirical expected shortfall/longrise

calculated using all growth observations of a particular country available up until period t.

Quantile regression

Growth-at-Risk analysis through quantile regression has been popularised by Adrian et al.

10As in Brownlees and Souza (2021) and Carriero et al. (2020a), for the out-of-sample exercise, we do not
consider horizons beyond one year. In addition, we do not use real-time vintages of growth data. The FCIs
are also not constructed in real-time and include a look-ahead bias (Brownlees and Souza, 2021).

11For these two models, we use the MATLAB routines made available by Adrian et al. (2019) and Brownlees
and Souza (2021), respectively.
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(2019) and has become a regular monitoring exercise at the IMF and other organisations.

Quantile regression was developed by Koenker and Bassett (1978) and we refer to this work

for details on the estimation. It can be viewed as a generalisation of a standard (mean)

regression where the p%-quantile of the dependent variable, Qp(y), is directly modeled as a

function of explanatory variables,

Qp(yi,t+h|t) = αp0i + αp1iyit + αp2iFCIit. (16)

The baseline quantile regressions for the forecasting exercise include a constant, current

growth and the FCI.12 The corresponding country-specific quantile regression coefficients

αp0i, α
p
1i, and αp2i can vary across quantiles. While quantile regression directly delivers GaR

forecasts, we apply the two-step approach of Adrian et al. (2019) to obtain ES/EL forecasts.

Specifically, Adrian et al. (2019) fit the skewed t-distribution of Azzalini and Capitanio (2003)

over the predicted 5%, 25%, 75% and 95% quantiles. The forecasts for ES/EL are then cal-

culated using the cumulative distribution function of the fitted skewed t-distribution. In

considering country-specific quantile regressions we follow Brownlees and Souza (2021), who

find these to generally have better forecasting performance than their panel counterparts.

Panel-GARCH

This model is one of the preferred specifications discussed in Brownlees and Souza (2021). In

essence, their approach is a GARCH(1,1) model with a flexible non-parametric form used to

model the standardised growth distribution. The model has the following form,

yi,t+1 = µi,t+1|t +
√
σ2i,t+1|tεi,t+1, εi,t+1 ∼ Dεi(0, 1), (17)

σ2i,t+1|t = σ2i (1− α− β) + αu2it + βσ2it, α, β > 0, (α+ β) < 1, (18)

where σ2i,t+1|t is the conditional (deterministic) one-step-ahead variance, σ2i is the uncondi-

tional variance, α and β are the GARCH parameters which are pooled across countries, and

uit is the non-standardised residual. The model is estimated by so-called composite likeli-

hood methods following Pakel et al. (2011). Since the h-step-ahead predictive distribution (for

h > 1) is not available in closed form, the authors rely on bootstrap techniques to generate a

large number of iterated one-step-ahead forecast paths. The forecasts of GaR and ES/EL at

each horizon are then calculated using these paths. Note that the GARCH approach relies

on iterated one-step-ahead forecasts for horizons h > 1 (including for the conditional mean)

while both the quantile regressions and the SV models are used in a direct multi-step-ahead

12Quantile regressions including all the explanatory variables generally perform worse in predicting downside
risk and these results are discussed in the robustness section.
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setting. For further methodological details, we refer to Brownlees and Souza (2021).

SV models with time-varying skewness and with symmetric (t-distributed) shocks

For the model specification with time-varying skewness, we consider two sets of explanatory

variables: the full set discussed in the previous sections and, motivated by the in-sample

analysis, a set that only includes the FCI. Both specifications include a constant and an

autoregressive term in the asymmetry equation.13

The general approach to GaR and ES/EL forecasting is identical for all stochastic volatility

specifications. To generate h-quarter-ahead GaR and ES/EL forecasts, we obtain the h-

quarter-ahead forecasts of the conditional mean and the latent variables h and δ for each

country. Since (log-)volatility is assumed to follow a random walk, the forecast for h is

simply, in each MCMC iteration, the draw for the last in-sample period. To obtain a forecast

of δ, we iterate forward Equation (4) by h-quarters, starting by using the draw for the last

in-sample period together with the h-period-lagged explanatory variables. This process is

continued to obtain the forecast of δ for h > 1. Importantly, since X in Equation (4) is

lagged by h-quarters, we only use information available at the end of the in-sample period

to obtain the h-quarter-ahead forecast of δ. Using the forecasts of the conditional mean and

latent variables, we then generate a draw from the corresponding predictive density in each

MCMC iteration and for each country. GaR and ES/EL are then estimated from these draws.

Finally, to assess the importance of the information contained in the variables in the asym-

metry equation, we also consider a simplified version of the time-varying skewness model. This

model is a SV model with t-distributed growth shocks obtained by imposing the restriction

δ = 0 for each country.

Accuracy measures for quantile and expected shortfall forecasts

To assess the accuracy of the GaR and ES/EL forecasts, we rely on different measures that

are regularly used in the literature on backtesting quantile and expected shortfall forecasts.

First, to assess the accuracy of GaR forecasts, we report two versions of the dynamic quantile

test of Engle and Manganelli (2004). The first, DQuc, tests whether the GaR forecasts have

unconditionally correct coverage, i.e. whether the share of GaR violations equals the nominal

coverage. The second, DQhits, tests whether GaR violations are optimal when including

lagged violations in the test equation, i.e. whether the violations are independent. These

tests have also been used in Brownlees and Souza (2021) and we refer there for a more

detailed explanation.

To further quantitatively assess the results, we report the tick loss, which is the standard

loss function to evaluate quantile estimates. In particular, the values reported in the tables

13For computational reasons, in the forecasting exercise the Gibbs sampler for all SV models is only run with
1,000,000 iterations and saving every 10th iteration thus leaving the number of effective draws unchanged.
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are the average tick loss across countries computed as

TLp =
1

N

N∑
i=1

(
1

T

T∑
t=1

(yi,t+h −GaRpi,t+h|t)(p− I{yi,t+h<GaR
p
i,t+h|t}

)

)
. (19)

When evaluating expected shortfall/longrise predictions, it needs to be noted that the accu-

racy of these predictions inherently depends on the accuracy of the corresponding quantile

predictions. While expected shortfall lacks the so-called elicitability property (Fissler and

Ziegel, 2016), quantile and shortfall forecasts can be evaluated jointly. Specifically, as Car-

riero et al. (2020a), we rely on the VaR-ES score of Fissler et al. (2015),

VaR-ES scorep =
1

N

N∑
i=1

(
1

T

T∑
t=1

((GaRpi,t+h|t(I{yi,t+h<GaR
p
i,t+h|t}

− p) (20)

− yi,t+hI{yi,t+h<GaR
p
i,t+h|t}

+
e
ESp

i,t+h|t

1 + e
ESp

i,t+h|t
(ESpi,t+h|t −GaR

p
i,t+h|t

+ p−1(GaRpi,t+h|t − yi,t+hI{yi,t+h<GaR
p
i,t+h|t}

)) + ln
2

1 + e
ESp

i,t+h|t
)),

where a smaller value indicates a better joint GaR/ES forecast. To compute this loss measure

for the upper quantile, we follow Carriero et al. (2020a) and multiply the quantile and longrise

series, as well as the data by -1, and apply the formula for the 5%-quantile.

Finally, as a second approach to evaluate the expected shortfall/longrise predictions, we

report the measure developed in Embrechts et al. (2005). This measure has been used in

Nakajima (2013) and Iseringhausen (2020) and is explained in more detail in these references.

In particular, it includes a penalty term for the accuracy of the shortfall/longrise forecast

depending on the precision of the quantile forecast. We report the average across countries

where a smaller value of the EKP measure indicates a more precise ES/EL forecast.

Forecasting results

The results of the out-of-sample forecasting exercise for horizons up to four-quarters-ahead

are presented in Table 2. We start by assessing the GaR forecasts. First, in terms of the DQ

tests, quantile regression clearly outperforms the historical benchmark at the upper quantile.

However, this is not the case for the lower quantile. In contrast, the GARCH model generally

outperforms both the historical benchmark and quantile regression for the lower and the

upper quantile. Lastly, all three stochastic volatility models perform, on average, similarly

compared to the GARCH approach with only small differences among them.
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Table 2: Results of out-of-sample forecasting exercise

h = 1 h = 2 h = 3 h = 4

Historical benchmark

DQuc DQhits TL DQuc DQhits TL DQuc DQhits TL DQuc DQhits TL

GaR5% 73 18 0.101 73 82 0.102 73 82 0.103 73 82 0.103

GaR95% 45 64 0.081 45 73 0.081 45 64 0.082 45 82 0.082

EKP VaR-ES score EKP VaR-ES score EKP VaR-ES score EKP VaR-ES score

ES5% 0.452 0.575 0.455 0.588 0.470 0.593 0.473 0.596

EL95% 0.446 0.690 0.450 0.691 0.454 0.691 0.457 0.692

Country-specific quantile regressions (FCI only)

DQuc DQhits TL DQuc DQhits TL DQuc DQhits TL DQuc DQhits TL

GaR5% 73 45 0.090 82 55 0.096 64 73 0.102 64 64 0.109

GaR95% 91 82 0.079 64 73 0.080 64 91 0.082 64 82 0.082

EKP VaR-ES score EKP VaR-ES score EKP VaR-ES score EKP VaR-ES score

ES5% 0.276 0.497 0.387 0.538 0.589 0.622 0.519 0.701

EL95% 0.272 0.676 0.334 0.698 0.240 0.697 0.250 0.693

Panel-GARCH(1,1)

DQuc DQhits TL DQuc DQhits TL DQuc DQhits TL DQuc DQhits TL

GaR5% 91 82 0.085 82 100 0.094 91 100 0.101 91 91 0.104

GaR95% 100 91 0.070 82 100 0.072 64 91 0.076 55 64 0.078

EKP VaR-ES score EKP VaR-ES score EKP VaR-ES score EKP VaR-ES score

ES5% 0.189 0.447 0.423 0.526 0.470 0.612 0.478 0.652

EL95% 0.294 0.650 0.343 0.654 0.342 0.666 0.422 0.679

SV model with symmetric shocks

DQuc DQhits TL DQuc DQhits TL DQuc DQhits TL DQuc DQhits TL

GaR5% 100 64 0.083 100 73 0.092 91 82 0.100 91 100 0.103

GaR95% 100 100 0.068 100 82 0.070 100 82 0.074 91 73 0.077

EKP VaR-ES score EKP VaR-ES score EKP VaR-ES score EKP VaR-ES score

ES5% 0.203 0.427 0.301 0.519 0.440 0.615 0.440 0.665

EL95% 0.175 0.628 0.201 0.639 0.181 0.656 0.204 0.666

SV model with time-varying skewness (FCI only)

DQuc DQhits TL DQuc DQhits TL DQuc DQhits TL DQuc DQhits TL

GaR5% 100 73 0.082 100 82 0.092 100 91 0.100 91 100 0.103

GaR95% 100 100 0.068 100 82 0.069 100 82 0.073 100 73 0.077

EKP VaR-ES score EKP VaR-ES score EKP VaR-ES score EKP VaR-ES score

ES5% 0.155 0.415 0.276 0.513 0.411 0.610 0.429 0.666

EL95% 0.153 0.628 0.175 0.637 0.162 0.653 0.194 0.664

SV model with time-varying skewness (FCI + TS + HP + WUI)

DQuc DQhits TL DQuc DQhits TL DQuc DQhits TL DQuc DQhits TL

GaR5% 100 64 0.082 100 73 0.093 100 73 0.099 91 100 0.102

GaR95% 100 100 0.068 91 91 0.071 100 82 0.075 82 82 0.078

EKP VaR-ES score EKP VaR-ES score EKP VaR-ES score EKP VaR-ES score

ES5% 0.183 0.418 0.328 0.527 0.437 0.611 0.455 0.663

EL95% 0.148 0.627 0.191 0.642 0.178 0.657 0.200 0.670

Note: This table contains the results of the out-of-sample forecasting exercise. Under DQuc and DQhits we report the share of country series for

which adequacy of the quantile forecasts is not rejected at the 5% level using two versions of the dynamic quantile test developed in Engle and

Manganelli (2004). For details see also Brownlees and Souza (2021). TL is the tick loss, EKP refers to the expected shortfall precision measure of

Embrechts et al. (2005), and the VaR-ES score is the measure developed in Fissler et al. (2015). Bold numbers indicate the model with the highest

average accuracy for each measure.
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Second, in terms of the tick loss (TL), the stochastic volatility models are the best per-

forming models across quantiles and horizons. Specifically, the model only including the FCI

as a driver of the shape of the predictive distribution has, on average, some small advantages

in predicting downside risk for h = 1 and h = 2, and for upside risk across horizons. The

other variables next to the FCI only marginally improve forecasts of downside risk at the

remaining horizons. Generally, the differences in average tick losses are very small across the

stochastic volatility specifications.

Third, when evaluating quantile and shortfall/longrise forecasts simultaneously using the

VaR-ES score, the SV model with time-varying skewness driven by the FCI proves most

successful at short horizons up to h = 2, and when forecasting upside risk at horizons h > 1.

For h > 2, the historical benchmark dominates for the left tail of the distribution, highlighting

the difficulty of econometric models to precisely forecast downside risk at longer horizons.

Fourth, when evaluating the expected shortfall/longrise forecasts using the measure of

Embrechts et al. (2005), financial conditions help to improve forecasts of downside risk and

upside risk across horizons. For h = 1, the EKP value of the time-varying skewness model only

including the FCI is clearly smaller than those of the strongest competitors when measuring

downside risk. Including variables beyond the FCI does not add much value in terms of

shortfall/longrise forecasts when looking at the EKP measure.

Table 3 complements the results presented in Table 2 by showing the outcome of tests for

superior forecasting performance (Diebold and Mariano, 1995). Specifically, as in Brownlees

and Souza (2021), we conduct pair-wise tests with the null hypothesis being equal predictive

ability against an one-sided alternative. The tests are based on the series of loss differences

using two different models, defined as the differences in the tick loss (for GaR) and the VaR-

ES score (for ES/EL), respectively. We note upfront that the existing literature often finds

limited evidence of statistically significant superior predictive ability for Growth-at-Risk and

expected shortfall/longrise forecasts (Brownlees and Souza, 2021; Carriero et al., 2020a). In

our analysis, we find that for downside risk at the short horizon (h = 1), the SV model with

time-varying skewness (‘FCI only’) is superior to quantile regression and the GARCH model

for 3-5 (out of 11) countries, and for 1-2 countries when evaluated against the symmetric

SV model. In turn, our proposed model is outperformed by other models for at most 1-2

countries. For h = 2 the ‘FCI only’ SV model continues to show, on average, the most

cases of outperformance. Overall, and in line with Brownlees and Souza (2021), the evidence

becomes weaker as h increases and for h > 2 most models have difficulties to outperform

even the historical benchmark for more than 1-2 countries. When predicting upside risk, the

evidence of superior forecasting accuracy is stronger across horizons, and the time-varying

skewness model including only the FCI is performing particularly well.
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Table 3: Tests for superior forecasting performance

Downside risk (5%)

Tick loss VaR-ES score

h Hist. QR GARCH SV (sym.) SV (FCI) SV (full) Hist. QR GARCH SV (sym.) SV (FCI) SV (full)

1

Hist. - 36 (36) 55 (73) 64 (73) 64 (73) 55 (73) - 36 (45) 45 (55) 55 (55) 55 (64) 55 (55)

QR 0 (0) - 27 (27) 27 (27) 27 (36) 27 (27) 0 (0) - 36 (36) 36 (45) 36 (45) 27 (45)

GARCH 0 (0) 9 (9) - 36 (36) 27 (27) 27 (36) 0 (0) 9 (9) - 36 (45) 36 (36) 18 (27)

SV (sym.) 0 (0) 9 (18) 0 (0) - 0 (18) 0 (0) 0 (0) 9 (18) 0 (0) - 0 (9) 0 (0)

SV (FCI) 0 (0) 9 (18) 0 (0) 0 (9) - 0 (9) 0 (0) 0 (9) 0 (0) 0 (0) - 0 (0)

SV (full) 0 (0) 9 (18) 0 (0) 9 (9) 9 (36) - 0 (0) 0 (18) 0 (0) 9 (18) 9 (27) -

2

Hist. - 27 (36) 36 (55) 18 (36) 36 (45) 36 (45) - 18 (18) 27 (36) 9 (18) 9 (36) 9 (18)

QR 0 (0) - 27 (27) 18 (27) 18 (27) 18 (27) 0 (0) - 18 (18) 9 (18) 18 (18) 18 (18)

GARCH 0 (9) 0 (0) - 18 (27) 18 (18) 9 (27) 0 (0) 0 (0) - 0 (9) 9 (9) 0 (9)

SV (sym.) 9 (9) 0 (0) 9 (9) - 9 (18) 9 (18) 0 (0) 0 (0) 0 (9) - 0 (9) 0 (18)

SV (FCI) 9 (9) 0 (9) 0 (9) 9 (9) - 0 (9) 0 (0) 0 (0) 0 (0) 9 (9) - 0 (0)

SV (full) 9 (9) 0 (0) 9 (9) 0 (9) 0 (0) - 0 (0) 0 (0) 0 (0) 0 (9) 0 (0) -

3

Hist. - 27 (36) 9 (9) 9 (9) 9 (9) 9 (9) - 27 (36) 9 (9) 9 (9) 9 (9) 9 (9)

QR 9 (18) - 18 (45) 9 (18) 9 (9) 9 (9) 0 (27) - 9 (27) 0 (9) 9 (9) 9 (9)

GARCH 9 (9) 0 (0) - 18 (18) 0 (9) 0 (18) 0 (9) 0 (0) - 0 (9) 0 (0) 0 (9)

SV (sym.) 9 (18) 0 (0) 0 (9) - 0 (0) 0 (0) 0 (9) 0 (0) 0 (0) - 0 (9) 9 (9)

SV (FCI) 9 (18) 0 (0) 9 (9) 18 (27) - 18 (27) 0 (9) 0 (0) 0 (0) 0 (0) - 18 (18)

SV (full) 0 (18) 0 (0) 9 (18) 0 (27) 0 (0) - 0 (9) 0 (0) 0 (0) 9 (18) 0 (9) -

4

Hist. - 9 (9) 9 (9) 18 (18) 18 (18) 18 (18) - 0 (9) 9 (9) 9 (9) 18 (18) 18 (18)

QR 9 (18) - 27 (27) 18 (27) 18 (36) 18 (36) 0 (18) - 18 (18) 9 (18) 9 (18) 9 (18)

GARCH 18 (36) 0 (0) - 18 (27) 18 (18) 18 (18) 18 (18) 0 (0) - 18 (27) 18 (27) 18 (27)

SV (sym.) 18 (18) 0 (0) 0 (0) - 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) - 0 (0) 9 (9)

SV (FCI) 18 (18) 0 (0) 0 (0) 36 (45) - 36 (36) 0 (18) 0 (0) 0 (0) 27 (27) - 27 (27)

SV (full) 18 (18) 0 (0) 0 (0) 9 (18) 0 (9) - 0 (18) 0 (0) 0 (0) 9 (18) 0 (9) -

Upside risk (95%)

Tick loss VaR-ES score

h Hist. QR GARCH SV (sym.) SV (FCI) SV (full) Hist. QR GARCH SV (sym.) SV (FCI) SV (full)

1

Hist. - 36 (36) 64 (73) 82 (91) 82 (82) 73 (91) - 36 (36) 73 (82) 91 (91) 91 (91) 91 (91)

QR 27 (27) - 64 (73) 64 (73) 73 (73) 64 (73) 18 (27) - 45 (45) 64 (73) 64 (73) 64 (73)

GARCH 0 (0) 0 (0) - 27 (27) 36 (45) 36 (36) 0 (0) 0 (0) - 27 (45) 36 (45) 36 (45)

SV (sym.) 0 (0) 0 (0) 9 (9) - 18 (18) 0 (9) 0 (0) 0 (0) 18 (18) - 9 (18) 0 (9)

SV (FCI) 0 (0) 0 (0) 9 (9) 0 (0) - 0 (9) 0 (0) 0 (0) 9 (18) 0 (9) - 0 (9)

SV (full) 0 (0) 0 (0) 9 (9) 27 (36) 27 (55) - 0 (0) 0 (0) 9 (9) 18 (27) 36 (45) -

2

Hist. - 18 (27) 73 (73) 55 (73) 64 (73) 55 (64) - 45 (45) 73 (82) 73 (82) 82 (82) 82 (82)

QR 0 (9) - 27 (64) 36 (55) 36 (73) 36 (73) 0 (0) - 36 (64) 36 (73) 45 (73) 45 (73)

GARCH 0 (0) 0 (0) - 18 (18) 27 (36) 27 (27) 0 (0) 0 (0) - 27 (36) 27 (45) 27 (36)

SV (sym.) 0 (0) 0 (0) 9 (27) - 45 (55) 18 (27) 0 (0) 0 (0) 9 (18) - 45 (64) 18 (27)

SV (FCI) 0 (0) 0 (0) 0 (18) 0 (0) - 0 (0) 0 (0) 0 (0) 0 (9) 0 (0) - 0 (0)

SV (full) 0 (0) 0 (0) 9 (27) 0 (0) 55 (55) - 0 (0) 0 (0) 0 (27) 0 (0) 55 (55) -

3

Hist. - 36 (36) 55 (55) 36 (55) 36 (55) 36 (55) - 36 (36) 55 (73) 55 (55) 55 (55) 55 (55)

QR 0 (0) - 18 (27) 9 (27) 9 (36) 9 (27) 0 (9) - 9 (18) 9 (36) 9 (36) 9 (27)

GARCH 9 (9) 9 (9) - 18 (36) 36 (36) 36 (36) 9 (9) 9 (9) - 36 (36) 27 (45) 27 (36)

SV (sym.) 0 (0) 0 (18) 9 (18) - 27 (36) 9 (9) 0 (0) 0 (9) 0 (9) - 18 (27) 9 (9)

SV (FCI) 0 (0) 0 (9) 0 (9) 0 (0) - 0 (0) 0 (0) 0 (9) 0 (0) 0 (0) - 0 (0)

SV (full) 0 (0) 0 (18) 0 (18) 0 (0) 45 (55) - 0 (0) 0 (9) 0 (9) 0 (0) 45 (45) -

4

Hist. - 27 (27) 36 (45) 27 (27) 27 (45) 27 (36) - 45 (45) 45 (55) 36 (45) 45 (45) 36 (45)

QR 0 (9) - 27 (36) 27 (27) 27 (27) 27 (27) 0 (0) - 18 (27) 18 (36) 18 (27) 18 (27)

GARCH 9 (9) 18 (18) - 18 (27) 18 (36) 18 (27) 9 (9) 27 (27) - 27 (36) 27 (27) 27 (27)

SV (sym.) 0 (0) 0 (9) 9 (9) - 36 (45) 18 (36) 0 (0) 0 (9) 9 (9) - 18 (55) 18 (27)

SV (FCI) 0 (0) 0 (9) 9 (9) 0 (0) - 0 (0) 0 (0) 0 (0) 0 (9) 0 (0) - 0 (0)

SV (full) 0 (0) 0 (9) 9 (9) 0 (9) 36 (55) - 0 (0) 0 (9) 0 (9) 0 (9) 55 (55) -

Note: This table contains the results of Diebold and Mariano (1995) tests to compare the forecasts generated by the different models. Similarly to Brownlees and

Souza (2021), we report the share of countries for which the model in the column produces more precise Growth-at-Risk and expected shortfall/longrise forecasts

than the model in the respective row at the 5% (10%) significance level (one-sided test).
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While these results are largely consistent with the cross-country average measures pre-

sented in Table 2, especially among the stochastic volatility models the differences in the

average losses are often not large enough to achieve statistical significance.

Figure 4: Out-of-sample one-step-ahead Growth-at-Risk

Quantile regr. Panel-GARCH SV with skew (FCI only) Realised growth

In summary, the results confirm the previous literature in some ways while adding new
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insights in others. In line with Brownlees and Souza (2021), we find commonly used quantile

regression to forecast poorly compared to standard time-varying volatility models such as a

GARCH-type specification that only requires data on economic growth as input. However, a

relatively simple specification from the family of symmetric stochastic volatility models seems

to perform even better than the GARCH model. When comparing SV models with standard

quantile regressions, Carriero et al. (2020b) also find the former to perform significantly better

in out-of-sample forecasting.14 Importantly from a policy perspective, we find that a time-

varying skewness model including the FCI can help to improve average forecasts of Growth-

at-Risk and expected shortfall. However, the gains compared to the symmetric SV model are

often small, especially for the quantile forecasts. A larger model including in addition the term

spread, house price growth, and an index of economic and policy uncertainty, occasionally

helps to improve single measures at some horizons but overall does not perform better than

the ‘FCI only’ specification.

Figure 4 shows the out-of-sample one-step-ahead GaR forecasts obtained from quantile

regressions, panel-GARCH and the SV model with time-varying skewness that only includes

the FCI. The corresponding chart showing the one-step-ahead ES/EL forecasts derived from

these models can be found in Appendix E. Overall, the two time-varying volatility models

(GARCH and SV) produce one-step-ahead forecasts of upside and downside risk that look

generally similar across countries. However, the forecasts from quantile regressions are quite

different and can be wider (e.g. in case of Australia) or narrower (e.g. in case of Japan), and

are often more erratic. The latter confirms the findings in Carriero et al. (2020a) for the

US, and this is not surprising as the forecasts from the time-varying volatility models have a

stronger dependence due to the assumptions on the respective volatility processes.

To conclude the forecasting section, Figure 5 evaluates the time variation in the impact

of financial conditions on the asymmetry of one-step-ahead conditional growth distributions.

Specifically, we plot the recursive estimate of the marginal effect at the average (MEA) for

the FCI from the ‘FCI only’ stochastic volatility model, computed as explained in Section

3.2. Alongside, we plot the cross-country average quantile regression coefficients for the FCI

and the 5% and 95% quantiles, respectively. First, the marginal effect of an increase of the

FCI on skewness in the SV model is negative for all recursive estimations. Second, the Great

Recession marks a structural break, after which the impact of financial conditions is estimated

to be much stronger. Third, a similar pattern can be observed for the average estimated 5%-

quantile regression coefficient. While the magnitudes are not directly comparable, the average

5%-quantile coefficient of the FCI co-moves closely with the MEA obtained from the time-

14Carriero et al. (2020b) include additional variables in the conditional mean specification of the SV model.
Our results suggest that even a SV model that only includes autoregressive terms in the mean equation,
outperforms quantile regressions.
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varying skewness model. Interestingly, according to the quantile regression estimates, in the

first part of the sample financial conditions seem to have had, on average, a stronger impact

on the upper quantile compared to the lower quantile. Future work could take this apparent

time variation in the effect of financial conditions on the asymmetry of predictive growth

distributions more explicitly into account.

Figure 5: Recursive estimates of the impact of FCI on asymmetry (one-quarter-ahead)

SV: MEA βFCI (posterior mean) QR: mean(α5%
2i ) QR: mean(α95%

2i )

Note: The dates refer to the last observation of the respective estimation (in-sample) period.

3.4 Robustness checks and alternative modeling choices

This section reports additional results with a focus on the out-of-sample forecasting perfor-

mance to assess the robustness of the baseline results as well as to discuss the impact of

alternative modeling choices. The detailed results are presented in Table E-1 in Appendix E.

First, the quantile regression considered as a competitor model is close to the original

specification of Adrian et al. (2019) and only includes the financial conditions index. We

also consider a quantile regression specification including the full set of explanatory variables.

However, the results indicate that in most cases this leads to a deterioration of the forecasting

performance compared to the more parsimonious specification. Second, to allow for an effect

of current growth rates on future asymmetry, we consider a specification where yt enters the

asymmetry equation as an additional variable. While there are some occasions where this can

improve the accuracy of GaR and ES/EL forecasts, the results remain overall comparable to

the baseline specification. Third, to ensure that skewness, which is driven by macro-financial

conditions, is a useful feature for forecasting, we consider a specification where the FCI is

also included in the conditional mean (with country-specific coefficients). Allowing financial

conditions to also impact the conditional mean overall improves the average forecasting per-
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formance further for h = 1 in terms of the loss measures. At the remaining horizons, the 
accuracy gains mostly occur when predicting downside risk while precision in the right tail of 
the distribution on average decreases. Importantly, the SV model with time-varying skewness 
and the FCI in the mean equation still maintains, on average, small advantages compared to 
the symmetric SV model that also includes the FCI in the mean equation. This is similar to 
the baseline comparison, i.e. when both models only include AR-dynamics in the mean equa-

tion. Finally, we consider a specification that allows for more flexibility in the cross-country

dynamics of volatility by allowing the innovation variance of the (log-)volatility process h, σh
2, 

to vary across countries. Table E-1 shows that this helps in some cases both the symmetric SV 
model and the SV model with time-varying skewness to achieve gains in forecasting accuracy 
compared to their baseline (pooled) counterparts. Again, this does not change the ranking 
among the two models and the time-varying skewness model still produces, on average, some-

what more precise risk forecasts. In summary, while certain alternative modeling choices can 
help to further improve the performance compared to the baseline specification, these ad-

ditional tests show that time-varying skewness driven directly by macro-financial conditions 
remains a useful feature.

4 Conclusion

Economic policy-makers have a long-standing interest in measuring and assessing downside 
risks to economic growth stemming from macro-financial conditions, and the academic lit-

erature has recently provided the Growth-at-Risk approach for this purpose. The study of 
growth vulnerability remains an active area of research and several recent contributions have 
scrutinised various aspects of the Growth-at-Risk framework. In particular, the question to 
what extent financial variables can help to inform this analysis and improve Growth-at-Risk 
forecasts, has been extensively discussed. Adding to this discussion, this paper proposes a 
new parametric model to measure the evolving asymmetry of the predictive GDP growth 
distribution, which can be interpreted as changing macroeconomic risk. The methodological 
basis for this approach is a stochastic volatility model in which the asymmetry parameter of 
the shock distribution varies as a function of macro-financial conditions. Thus, the model 
allows the conditional growth distribution to feature time-varying skewness, which reflects 
unbalanced risks surrounding the baseline macroeconomic outlook.

For a panel of 11 OECD countries over the period 1973:Q1–2019:Q4, this model provides 
the following insights. First, the estimated effect of financial conditions, as measured by the 
IMF’s financial conditions index (FCI), on the skewness of the predictive growth distribution 
is in line with a growing number of studies in the literature. Tightening financial conditions
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skew the short-term predictive growth distribution to the left, but the opposite effect emerges 
at longer horizons. Second, when forecasting Growth-at-Risk and expected shortfall/longrise 
out-of-sample, the proposed model competes well with existing approaches and proves partic-

ularly useful at short horizons for downside risk, and across horizons when forecasting upside 
risk. Including, in addition, a measure of economic and policy uncertainty, or some of the 
prominent components of the FCI separately, does generally not improve or only adds very 
little to the forecasting performance of the model.

The results derived from the model proposed in this paper can provide valuable insights for 
policy-makers, especially during the current COVID-19 crisis. Both fiscal and monetary policy 
have provided large-scale support that has helped to keep financial conditions favorable during 
the pandemic. While this has undoubtedly been crucial to stabilise the economic environment 
during this unprecedented crisis, at some point the support will be phased out and financial 
conditions could be adversely affected. Our results provide additional evidence that such a 
tightening of financial conditions could create short-term vulnerabilities that require close 
monitoring. In this regard, the model can provide quantitative evidence to support economic 
policy decisions. Finally, from a forecasting perspective the suggested approach competes well 
in predicting risks to the economic outlook, and could thus be a tool that benefits regular 
macroeconomic risk analysis at policy institutions.
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Appendix A Moments of the noncentral t-distribution

The central moments of a noncentral t-distributed random variable, X ∼ NCT (ν, δ), can be

written as polynomials of δ whose coefficients are functions of ν (Hogben et al., 1961). The

mean, variance, and third and fourth central moment of X are given by:

E[X] = c11(ν)δ, if ν > 1,

E
[
(X − E[X])2

]
= c22(ν)δ2 + c20(ν), if ν > 2,

E
[
(X − E[X])3

]
= c33(ν)δ3 + c31(ν)δ, if ν > 3,

E
[
(X − E[X])4

]
= c44(ν)δ4 + c42(ν)δ2 + c40, if ν > 4.

The coefficients have the following functional forms:

c11(ν) =

√
1

2
ν

Γ
[
1
2(ν − 1)

]
Γ(12ν)

, c22(ν) =
ν

ν − 2
− c11(ν)2, c20(ν) =

ν

ν − 2
,

c33(ν) = c11(ν)

[
ν(7− 2ν)

(ν − 2)(ν − 3)
+ 2c11(ν)2

]
, c31(ν) =

3ν

(ν − 2)(ν − 3)
c11(ν),

c44(ν) =
ν2

(ν − 2)(ν − 4)
− 2ν(5− ν)c11(ν)2

(ν − 2)(ν − 3)
− 3c11(ν)4,

c42(ν) =
6ν

ν − 2

[
ν

ν − 4
− (ν − 1)c11(ν)2

ν − 3

]
, c40(ν) =

3ν2

(ν − 2)(ν − 4)
.

Appendix B Details on the MCMC algorithm

This appendix provides details on the MCMC algorithm and the conditional posterior dis-

tributions from which the unobserved components and parameters of the panel stochastic

volatility model with time-varying skewness are drawn. The presentation closely follows Is-

eringhausen (2020).

Block 1: Sample the conditional mean coefficients γ from p(γ|y,Xµ, h, δ, λ, ν)

The country-specific k-dimensional vector of regression coefficients γi of the conditional mean

specification µi can be sampled as outlined in Tsionas (2002). Sampling is done country-by-

country, for i = 1, ..., N , from the following conditional posterior distribution

γi|yi, Xµi , hi, δi, λi, ν ∼ N
(

[X ′µiΛ
−1
i Xµi ]

−1X ′iΛ
−1
i (ỹi − δi � ehi/2 � λ1/2i ), ehi [X ′µiΛ

−1
i Xµi ]

−1
)
,

(B-1)
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where Xµi is a T ×k matrix containing a constant, current growth, and three additional lags.

Furthermore, Λi = diag(λi1, ..., λiT ), ỹi = yi + ehi/2c11(ν)δi and � denotes the element-wise

(Hadamard) product of two vectors. Different from Tsionas (2002), the second summand

of the transformed dependent variable ỹi reflects the fact that we consider the de-meaned

version of the noncentral t-distribution.

Block 2: Sample the mixture indicators s from p(s|y,Xµ, h, δ, ν, γ)

The country-by-country sampling of the mixture indicators si builds on the approach of Kim

et al. (1998) but includes an extension to account for the fact that the specific mixture

components depend on ν (which changes over MCMC iterations) and δit (which changes over

MCMC iterations and time). Specifically, sit is a discrete random variable with M = 10

possible realisations, and where each sit has the following probability mass function

p(sit = j|yit, Xµit , hit, δit, ν, γi) =
1

kit
qj(ν, δit)pN

(
ỹit;hit +mj(ν, δit), v

2
j (ν, δit)

)
. (B-2)

In terms of notation, ỹit = log((yit −Xµitγi)
2 + c), c = 10−6 is an offset constant and

kit =
∑10

j=1 qj(ν, δit)pN

(
ỹit;hit +mj(ν, δit), v

2
j (ν, δit)

)
is a normalising constant. The indica-

tor sampling is operationalised by using the inverse-transform method as in Chan and Hsiao

(2014).

Block 3: Sample the (log-)volatilities h from p(h|y,Xµ, s, δ, ν, γ, σ
2
h)

First, let us specify a general state space model of the following form (see Durbin and Koop-

man, 2012)

wt = Ztκt + et, et ∼ N (0, Ht), (B-3)

κt+1 = dt + Ttκt +Rtηt, ηt ∼ N (0, Qt), (B-4)

where wt is an observed realisation of a dependent variable and κt the unobserved state.

The matrices Zt, Tt, Ht, Qt, Rt, and dt are assumed to be given and thus conditioned

upon. The error terms of the observation and state equation, et and ηt, are assumed serially

uncorrelated and independent at all leads and lags. Given this general form, the specific

state space representation employed in this block to sample the latent (log-)volatility series
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hi, country-by-country, is then

ỹit −msit(ν, δit)︸ ︷︷ ︸
wit

=
[
1
]

︸︷︷︸
Zit

hit︸︷︷︸
κit

+ εit︸︷︷︸
eit

, (B-5)

hi,t+1︸ ︷︷ ︸
κi,t+1

=
[
1
]

︸︷︷︸
Tit

hit︸︷︷︸
κit

+
[
1
]

︸︷︷︸
Rit

ηit︸︷︷︸
ηit

, (B-6)

where ỹit = log((yit−Xµitγi)
2+c), Hit = v2sit(ν, δit) and Qit = σ2h. We filter the unknown state

variable hit from the linear Gaussian state space model given by Equations (B-5) and (B-6)

using recently developed sparse matrix algorithms (Chan and Jeliazkov, 2009; McCausland

et al., 2011). In particular, we follow Chan and Hsiao (2014) who show how to efficiently

sample the (log-)volatilities hit based on these algorithms. A detailed explanation of the

so-called precision sampler can be found on pp. 5-8 in Chan and Hsiao (2014).

Block 4: Sample the latent state λ from p(λ|y,Xµ, h, δ, ν, γ)

The sampling approach for the latent state variable λi, country-by-country, follows Tsionas

(2002). The conditional distribution of each λit is

p(λit|yit, Xµit , hit, δit, ν, γi) ∝ λ
−(ν+3)/2
it exp

[
−u

2
it/e

hit + ν

2λit
+ δit(uit/e

hit/2)λ
−1/2
it

]
, (B-7)

where uit = yit −Xµitγi + ehit/2c11(ν)δit. If δit = δ = 0, the shocks are Student t-distributed

and sampling λit from its inverse-gamma conditional posterior distribution is straightforward

as in e.g. Chan and Hsiao (2014). In the general noncentral case the conditional distribution is

non-standard and we require acceptance sampling. Tsionas (2002) notes that the conditional

distribution of wit = λ
−1/2
it is log-concave and each wit follows the distribution

p(wit|yit, Xµit , hit, δit, ν, γi) ∝ wνitexp

(
−u

2
it/e

hit + ν

2
w2
it +

δituit

ehit/2
wit

)
. (B-8)

This distribution is part of a more general family of distributions with kernel function

f(x) ∝ xN−1exp(−(A/2)x2 +Bx), (B-9)

where N1 = ν + 1, A = u2/eh + ν and B = δu/eh/2.

As a proposal density for the acceptance sampling g(x) ∼ Gamma(N1, θ
∗) is used, where
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θ∗ = N1/x
∗ and x∗ is the positive root that is the solution to

Aitx
2 −Bitx−N1 = 0. (B-10)

The candidate draw w∗it is accepted with probability

R = exp(r∗ − r), (B-11)

where r∗ = log(f(x)/g(x)) evaluated at w∗it and r = log(f(x)/g(x)) evaluated at x∗. Specifi-

cally,

r∗ = −(Ait/2)w∗it
2 + (Bit + θ∗)w∗it −N1 log(θ∗), (B-12)

r = −(Ait/2)x∗2 + (Bit + θ∗)x∗ −N1 log(θ∗). (B-13)

Once a candidate draw w∗it has been accepted, the original state variable is simply recovered

as λit = w∗it
−2.

Block 5: Sample the degrees of freedom ν from p(ν|λ)

The description of the sampling approach for the degrees of freedom ν, which is pooled

across countries, closely follows Chan and Hsiao (2014). In particular, the (log-)conditional

posterior distribution of ν remains identical compared to the (symmetric) Student-t case

(Tsionas, 2002). Using the NT × 1 vector λ̃, which stacks the N country-specific column

vectors λi, the (log-)conditional posterior distribution of interest is

log p(ν|λ̃) =
NTν

2
log(ν/2)−NT log Γ(ν/2)− (ν/2 + 1)

NT∑
j=1

log λ̃j −
ν

2

NT∑
j=1

λ̃−1j + k,

(B-14)

for 0 < ν < ν̄ and k is a normalisation constant. The first and second derivative of this

distribution with respect to ν are given by

d log p(ν|λ̃)

dν
=
NT

2
log(ν/2) +

NT

2
− NT

2
Ψ(ν/2)− 1

2

NT∑
j=1

log λ̃j −
1

2

NT∑
j=1

λ̃−1j , (B-15)

d2 log p(ν|λ̃)

dν2
=
NT

2ν
− NT

4
Ψ′(ν/2), (B-16)

where Ψ(x) = d
dx log Γ(x) and Ψ′(x) = d

dxΨ(x) denote the digamma and trigamma function,

respectively. The first and second derivatives can be evaluated easily, and thus log p(ν|λ̃) can
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be maximised by well-known algorithms (e.g. the Newton-Raphson method). In addition,

the mode and the negative Hessian evaluated at the mode, ν̂ and Kν , are obtained. Lastly,

to sample a draw of ν, a Metropolis-Hastings step is implemented with proposal density

N (ν̂, K−1ν ).

Block 6: Sample the latent noncentrality parameter δ from

p(δ|y,Xµ, h, λ, ν, γ,Xδ, φ, β, σ
2
δ )

Similarly to Iseringhausen (2020), for the sampling of the time-varying noncentrality param-

eter δi, country-by-country, we explore the following state space model

ỹit︸︷︷︸
wit

=
[
λ
1/2
it − c11(ν)

]
︸ ︷︷ ︸

Zit

δit︸︷︷︸
κit

+ εit︸︷︷︸
eit

, (B-17)

δi,t+1︸ ︷︷ ︸
κi,t+1

= [Xδitβ]︸ ︷︷ ︸
dit

+
[
φ
]

︸︷︷︸
Tit

δit︸︷︷︸
κit

+
[
1
]

︸︷︷︸
Rit

ωit︸︷︷︸
ηit

, (B-18)

where ỹit = (yit −Xµitγi)e
−hit/2, Hit = λit, and Qit = σ2δ . The observation Equation (B-17)

is derived by rewriting the model in Equation (9). Again, we use the routine developed in

Chan and Jeliazkov (2009) to obtain a sample of δi = (δi1, ..., δiT ) for i = 1, ..., N .

Block 7: Sample the coefficients of the asymmetry process δ from p(φ, β|δ,Xδ, σ
2
δ)

Conditional on the latent asymmetry parameter δ, the task of sampling the pooled coeffi-

cients on the explanatory variables that determine skewness, simplifies to the linear Bayesian

regression problem that is treated in standard textbooks (see e.g. Koop, 2003) with an addi-

tional acceptance-rejection step to ensure that φ remains in the stationary region. Defining

β̃ = (φ, β′)′, β̃0 = (φ0, β
′
0)
′, σ2

β̃0
= σ2φ0 = σ2β0, the conditional posterior is

β̃|δ,Xδ, σ
2
δ ∼ N (

̂̃
β,Σ

β̃
), (B-19)

̂̃
β =

(
σ2
β̃0
I−1K+1 +

1

σ2δ
X̃δ
′
X̃δ

)−1(
σ2
β̃0
I−1K+1β̃0 +

1

σ2δ
X̃δ
′
X̃δ

)−1
, (B-20)

Σ
β̃

=

(
σ2
β̃0
I−1K+1 +

1

σ2δ
X̃δ
′
δ̃

)−1
, (B-21)

where X̃δ = [δ′t−1, X
′
δ1
, ..., X ′δN ]′, δ̃ = [δ′1, ..., δ

′
N ]′, and IK+1 is the identity matrix of dimension

K+1. After obtaining a draw of β̃, the stationarity condition of φ is checked and if not fulfilled,

sampling of β̃ is repeated until a draw of φ lies within the unit circle.
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Block 8: Sample the shock variances σ2
h from p(σ2

h|h) and σ2
δ from p(σ2

δ |δ,Xδ, φ, β)

The innovation variances of the (log-)volatility hit and the noncentrality parameter δit are

pooled across countries and have inverse-gamma conditional posterior distributions (Kim

et al., 1998). The conditional posterior distribution of σ2h is

σ2h|h ∼ IG(ch0 +N(T − 1)/2, Ch), (B-22)

where notation follows Chan and Hsiao (2014) and where Ch is defined as,

Ch = Ch0 +

[
N∑
i=1

T∑
t=2

(hit − hi,t−1)2
]
/2. (B-23)

The conditional posterior distribution of σ2δ is

σ2δ |δ,Xδ, φ, β ∼ IG(cδ0 +N(T − 1)/2, Cδ), (B-24)

where Cδ is defined as,

Cδ = Cδ0 +

[
N∑
i=1

T∑
t=2

(δit − φδi,t−1 −Xδitβ)2

]
/2. (B-25)

Appendix C Monte Carlo simulation

This section uses a small simulation exercise to study the performance of the MCMC algo-

rithm presented in Section 2.2 and to show its ability to recover the true data generating

parameters. We generate 1, 000 datasets from the following data generating process (DGP),

which constitutes a simplified version of the main model that, for the sake of simplicity, has no

predictive dimension (h = 0), excludes the conditional mean specification, and only considers

one exogenous variable in the asymmetry equation:

yit = ehit/2εit, i = 1, ..., N, t = 1, ..., T, (C-1)

εit = uit − E[uit], uit ∼ NCT (ν, δit), (C-2)

hit = hi,t−1 + ηit, ηit ∼ N (0, σ2h), (C-3)

δit = φδi,t−1 + β0 + β1xit + ωit, ωit ∼ N (0, σ2δ ), |φ| < 1, (C-4)

xit = ρxi,t−1 + eit, eit ∼ N (0, σ2x), |ρ| < 1. (C-5)

The true model parameters are set as follows: φ = 0.7, β0 = −0.2, β1 = 1, σ2h = 0.12,

σ2δ = 0.12, ν = 6, ρ = 0.7, and σ2x = 0.1. To avoid unrealistic realisations of the (unrestricted)
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random walk process for hit, when generating the data we restrict hit to lie in the interval

[−1, 1]. Moreover, to reduce the impact of initial conditions on the processes for h, δ, and x,

we run the DGP for 50 periods before generating each dataset.

After obtaining a dataset, we estimate the model excluding the Gibbs block for the condi-

tional mean, and using as input only y and x. The prior configurations are identical to those

used in the main analysis. Table C-1 shows the results of the Monte Carlo simulation. In

general, the algorithm performs well in recovering the underlying parameters of the DGP. For

a relatively small sample size comparable to the one of our macroeconomic dataset (N = 10

and T = 200), the average posterior means deviate somewhat from the true values. This

is not surprising since the priors are not centered around the true values thus inducing a

distortion and, more generally, Bayesian estimators are not unbiased (Box, 1971). However,

the Monte Carlo distribution covers the true value with large probability mass in all cases.

Table C-1: Results Monte Carlo simulation

N = 10 / T = 200 N = 10 / T = 1, 000

φ β0 β1 σ2h σ2δ ν φ β0 β1 σ2h σ2δ ν

True 0.70 -0.20 1.00 0.01 0.01 6.00 0.70 -0.20 1.00 0.01 0.01 6.00

Mean 0.60 -0.26 1.16 0.01 0.02 6.67 0.68 -0.20 0.96 0.01 0.02 5.94

Std. 0.11 0.11 0.32 0.00 0.01 1.89 0.03 0.03 0.11 0.00 0.01 0.45

CD 0.48 0.48 0.46 0.47 0.47 0.46 0.48 0.48 0.48 0.49 0.43 0.46

IF 275.5 237.3 296.9 18.2 123.3 61.3 159.4 137.9 216.0 24.0 505.9 25.2

Note: The table shows the average posterior means across all Monte Carlo samples and the standard deviations of

the estimated posterior means. CD is the average p-value of the convergence diagnostic of Geweke (1992) and IF is

the average inefficiency factor described in Chib (2001).

To show that these minor inaccuracies are purely due to limited information in a smaller

dataset rather than actual problems with the MCMC algorithm, we also consider a simulation

exercise with a longer time series dimension (T = 1, 000). The results indicate that estimation

precision quickly increases with rising T . In this case, the Monte Carlo averages are even closer

to the true values with only small dispersion.

The convergence diagnostic of Geweke (1992) shows that the null hypothesis of a con-

verged Markov chain can, on average, not be rejected for all six model parameters in both

simulations. Finally, the algorithm is somewhat inefficient in sampling uncorrelated draws

from the conditional posterior distributions of the parameters in the asymmetry equation.

Similar results have already been reported in Iseringhausen (2020) for the original model, but

we note that an even larger number of Gibbs iterations does not alter the results meaningfully.
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Appendix D Data

Table D-1: Data description, sources, and information on imputation

Variable Description Source Imputed obs.

y Quarter-over-quarter

real GDP growth (in

percent, seasonally

adjusted)

OECD —

FCI Financial

Conditions Index

IMF (2017, 2018) CA: 1973Q1–1980Q4

IT: 1973Q1–1980Q4

ES: 1973Q1–1980Q4

SE: 1973Q1–1980Q4

CH: 1973Q1–1980Q4

TS Term spread: 10-year

interest rate minus

3-month interest rate

OECD IT: 1973:Q1–1990:Q4

JP: 1973:Q1–2002Q1

ES: 1973:Q1–1979Q4

SE: 1973:Q1–1986Q3

CH: 1973:Q1–1973Q4

GB: 1973:Q1–1985Q4

HP Quarter-over-quarter

percentage change of

seasonally adjusted real

house price index

OECD —

WUI World Uncertainty

Index

WorldUncertaintyIndex.com

(Ahir et al., 2018)

—

Note: This table contains details on the variables used in the estimations, their definitions, and sources. The

last column mentions the countries and periods for which missing values have been imputed. The imputed

values are taken directly from the available dataset of Brownlees and Souza (2021). These authors impute

missing observations with the cross-sectional average of the other countries in each period, which are re-scaled

such that the standard deviation of the original series remains unchanged. While for the FCI missing values

are imputed based on the six countries with a complete FCI series that are also used in this paper, for the term

spread some cross-sectional averages are based on more countries that are part of the larger 24-country sample

of Brownlees and Souza (2021). For further details, the reader is referred to Brownlees and Souza (2021).

40



Figure D-1: Time series plots of (non-standardised) explanatory variables

AU CA FR DE IT JP

ES SE CH GB US
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Appendix E Additional results

Figure E-1: Out-of-sample one-step-ahead expected shortfall/longrise

Quantile regr. Panel-GARCH SV with skew (FCI only) Realised growth
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Table E-1: Robustness checks and alternative specifications for forecasting exercise

h = 1 h = 2 h = 3 h = 4

Country-specific quantile regressions (FCI + TS + HP + WUI)

DQuc DQhits TL DQuc DQhits TL DQuc DQhits TL DQuc DQhits TL

GaR5% 64 55 0.097 73 55 0.095 64 82 0.109 55 91 0.114

GaR95% 82 82 0.081 91 100 0.092 100 91 0.088 82 100 0.095

EKP VaR-ES score EKP VaR-ES score EKP VaR-ES score EKP VaR-ES score

ES5% 0.400 0.628 0.338 0.558 0.429 0.736 0.520 0.793

EL95% 0.367 0.717 0.284 0.790 0.289 0.742 0.337 0.805

SV model with time-varying skewness (FCI + yt)

DQuc DQhits TL DQuc DQhits TL DQuc DQhits TL DQuc DQhits TL

GaR5% 100 64 0.082 100 82 0.092 100 100 0.100 91 100 0.103

GaR95% 100 100 0.068 100 82 0.069 100 82 0.074 100 73 0.077

EKP VaR-ES score EKP VaR-ES score EKP VaR-ES score EKP VaR-ES score

ES5% 0.177 0.417 0.275 0.509 0.417 0.610 0.434 0.669

EL95% 0.164 0.628 0.171 0.635 0.162 0.653 0.189 0.664

SV model with symmetric shocks (FCI in cond. mean)

DQuc DQhits TL DQuc DQhits TL DQuc DQhits TL DQuc DQhits TL

GaR5% 91 55 0.082 91 73 0.092 100 64 0.100 91 73 0.104

GaR95% 100 100 0.068 91 82 0.071 100 100 0.075 91 73 0.078

EKP VaR-ES score EKP VaR-ES score EKP VaR-ES score EKP VaR-ES score

ES5% 0.188 0.412 0.295 0.512 0.415 0.612 0.422 0.682

EL95% 0.184 0.629 0.187 0.648 0.183 0.658 0.184 0.667

SV model with time-varying skewness (FCI in asym. eq. + FCI in cond. mean)

DQuc DQhits TL DQuc DQhits TL DQuc DQhits TL DQuc DQhits TL

GaR5% 91 64 0.080 91 64 0.092 100 91 0.100 100 64 0.104

GaR95% 100 100 0.067 100 82 0.070 100 100 0.074 91 73 0.077

EKP VaR-ES score EKP VaR-ES score EKP VaR-ES score EKP VaR-ES score

ES5% 0.146 0.398 0.285 0.508 0.383 0.608 0.417 0.683

EL95% 0.172 0.626 0.178 0.645 0.169 0.655 0.177 0.665

SV model with symmetric shocks and heterogenous σ2h
DQuc DQhits TL DQuc DQhits TL DQuc DQhits TL DQuc DQhits TL

GaR5% 100 36 0.083 100 91 0.091 100 91 0.099 100 91 0.101

GaR95% 100 100 0.068 100 82 0.070 100 91 0.074 91 73 0.077

EKP VaR-ES score EKP VaR-ES score EKP VaR-ES score EKP VaR-ES score

ES5% 0.205 0.426 0.308 0.515 0.441 0.608 0.447 0.650

EL95% 0.181 0.630 0.203 0.643 0.190 0.658 0.217 0.669

SV model with time-varying skewness (FCI) and heterogenous σ2h
DQuc DQhits TL DQuc DQhits TL DQuc DQhits TL DQuc DQhits TL

GaR5% 100 45 0.081 100 73 0.091 100 91 0.099 100 91 0.101

GaR95% 100 100 0.068 100 91 0.069 100 91 0.073 91 73 0.076

EKP VaR-ES score EKP VaR-ES score EKP VaR-ES score EKP VaR-ES score

ES5% 0.163 0.412 0.287 0.509 0.410 0.603 0.443 0.652

EL95% 0.153 0.628 0.167 0.639 0.165 0.653 0.196 0.664

Note: See Table 2. Bold numbers indicate an improvement in the measure compared to the respective baseline model shown in Table 2, i.e. the

‘FCI only’ quantile regression, the baseline SV model with symmetric shocks, or the baseline SV model with time-varying skewness (‘FCI only’).
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