
This paper measures the degree of common movements across European 
stock markets and aims to understand possible contagion effects when shocks 
occur.

Disclaimer
This working paper should not be reported as representing the views of the 
ESM. The views expressed in this Working Paper are those of the authors and 
do not necessarily represent those of the ESM or ESM policy.

Working Paper Series  | 76 |  2026

Financial market interdependence,
contagion and jumpy risk exposure 

Gerdie Everaert     
Ghent University  

Martin Iseringhausen       
European Stability Mechanism  



Disclaimer
This Working Paper should not be reported as representing the views of the ESM. The views 
expressed in this Working Paper are those of the authors and do not necessarily represent those of 
the ESM or ESM policy. No responsibility or liability is accepted by the ESM in relation to the accuracy 
or completeness of the information, including any data sets, presented in this Working Paper.

© European Stability Mechanism, 2026 All rights reserved. Any reproduction, publication and reprint in the form of a 
different publication, whether printed or produced electronically, in whole or in part, is permitted only with the explicit 
written authorisation of the European Stability Mechanism.

Financial market interdependence,
contagion and jumpy risk exposure 

Gerdie Everaert  Ghent University

Martin Iseringhausen  European Stability Mechanism

Abstract
We develop a factor model to jointly measure financial market interdependence and 
contagion effects. Countries’ exposure to the common factor is composed of a slow-
moving trend, measuring cross-market linkages during ‘normal times’ and a regime-
switching component, measuring excess sensitivity often indicative of contagion. When 
estimating the model using daily excess returns for 19 European stock markets over the 
period 1995–2025, we find a decreasing degree of interdependence after the Great 
Recession. Moreover, we identify contagion days in multiple countries, often linked to 
well-known market events. Finally, allowing for regime changes in the factor loadings 
can help improve forecasts of downside risk.

Working Paper Series  |  76  |  2026

Keywords: Bayesian analysis, factor model, regime switching, stock markets

JEL codes: C11, C58, G15

ISSN 2443-5503                                          
ISBN 978-92-95223-87-5                         

doi: 10.2852/ 3771426
EU catalog number: DW-01-26-002-EN-N        



Financial market interdependence,

contagion and jumpy risk exposure

Gerdie Everaert

Ghent University

Martin Iseringhausen

European Stability Mechanism

January 25, 2026

Abstract

We develop a factor model to jointly measure financial market interdependence

and contagion effects. Countries’ exposure to the common factor is composed of a

slow-moving trend, measuring cross-market linkages during ‘normal times’, and a

regime-switching component, measuring excess sensitivity often indicative of conta-

gion. When estimating the model using daily excess returns for 19 European stock

markets over the period 1995–2025, we find a decreasing degree of interdependence

after the Great Recession. Moreover, we identify contagion days in multiple coun-

tries, often linked to well-known market events. Finally, allowing for regime changes

in the factor loadings can help improve forecasts of downside risk.

JEL: C11, C58, G15

Keywords: Bayesian analysis, factor model, regime switching, stock markets

The views expressed in this paper are those of the authors and do not necessarily reflect those
of the European Stability Mechanism (ESM). The authors would like to thank Kris Boudt, Matteo
Ciccarelli, Ignace De Vos, Matthias Gnewuch, Koen Inghelbrecht, Dimitris Korobilis, Sinem Toraman,
David Veredas, Johannes Weytjens, Elias Wolf and the participants of the 7th Ghent University Empirical
Macroeconomics Workshop and an ESM Research Seminar for helpful comments. An earlier version
of this paper was included in the second author’s PhD thesis (Ghent University, 2019) and Martin
Iseringhausen gratefully acknowledges financial support from Ghent University’s Special Research Fund
(BOF), received until August 2020. The computational resources (Stevin Supercomputer Infrastructure)
and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by
Ghent University, FWO and the Flemish Government – department EWI. Correspondence to: Martin
Iseringhausen, European Stability Mechanism, 6a Circuit de la Foire Internationale, L-1347, Luxembourg.



1 Introduction

The question as to what extent observed comovement of financial markets reflects inter-

dependence due to structural factors such as globalisation, or a contagious transmission

of shocks, has concerned both researchers and policymakers for decades. Since no unan-

imously accepted definition of financial contagion exists (see, e.g., Claessens et al., 2001;

Pericoli and Sbracia, 2003; Forbes, 2012; Dungey and Gajurel, 2014), and various meth-

ods have been used to study comovement in different financial markets, the findings range

from ‘only interdependence’ to ‘significant presence of contagion’. Contributing to this

debate, we propose a new approach to jointly measure financial market interdependence

and contagion effects and analyse both for the case of European stock markets.

Starting from King and Wadhwani (1990), numerous papers have studied interde-

pendence and contagion by looking at whether cross-market correlations have increased

significantly during times of crisis compared to non-crisis periods (e.g. Lee and Kim,

1993; Calvo and Reinhart, 1996). In a seminal paper, Forbes and Rigobon (2002) show

that correlation coefficients are always conditional on market volatility, which tends to

be higher during crises. As a result, this simple measure is biased towards finding evi-

dence of contagion. Alternatively, they suggest a heteroscedasticity-adjusted correlation

coefficient and find almost no evidence of contagion during the 1987 U.S. stock market

crash, the 1994 Mexican peso devaluation, and the 1997 East Asian crisis when using

daily stock market data for a large number of countries. However, the adjustment of

Forbes and Rigobon (2002) has been criticised due to its restrictive assumptions on the

variance ratio of common and country-specific shocks (Billio and Pelizzon, 2003; Corsetti

et al., 2005; Dungey and Renault, 2018) and its lack of robustness, e.g. with respect to

the dating of crisis periods (Billio and Pelizzon, 2003).

Partly based on some of this criticism, Bekaert et al. (2005) have argued that market

integration and financial contagion should be studied in a factor model framework where

all sources of changing cross-market correlations can be properly modeled.1 Bekaert et al.

1Alternative approaches to analyse contagion exist. Bae et al. (2003) identify contagion through coincid-
ing extreme returns, and find contagion during previous episodes both within and from Latin America
and Asia, but being more important in the former case. Ciccarelli and Rebucci (2007) use a time-varying
coefficients model for the Chilean FX market during the Argentine crisis. While a non-zero coefficient on
another country’s characteristics reflects interdependence, sudden changes indicate contagion. Their ap-
proach is robust to heteroscedasticity and omitted variables. The authors find interdependence between
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(2005) study 22 Asian, European, and Latin American equity markets and assume that

a country’s (monthly) excess return depends on a U.S. and a regional factor, as well as

country-specific shocks. The U.S. and the regional factor are proxied by value-weighted

indices while time variation in the factor loadings depends on a country’s respective trade

shares as well as the importance of trade for the economy. The authors define contagion

as correlation of the model residuals, i.e. return comovement that is ‘excessive’ compared

to what would be implied by the underlying factor model. Comparing this residual cor-

relation between crisis and non-crisis periods, the findings suggest no contagion during

the Mexican crisis (11/1994–12/1995), but meaningful contagion during the Asian crisis

(04/1997–10/1998). Baele and Inghelbrecht (2010) assume that time variation in the fac-

tor loadings is determined by fundamentals and, in addition, a two-state regime-switching

process that should capture changing integration over the cycle. Analysing 14 European

markets and various crisis periods, they show that allowing for such regime switches can

impact the results of the contagion test of Bekaert et al. (2005), with little evidence of

contagion in the preferred model.2 Bekaert et al. (2014) extend the model of Bekaert et al.

(2005) to study the sources of contagion. The authors allow the factor loadings and the

transmission channels through fundamentals to change during crisis periods, reflecting

excessive exposure to the common factor, i.e. contagion. Focusing on shock transmis-

sion during the Global Financial Crisis (GFC) across a large number of country-industry

equity portfolios, their results indicate that “If there is contagion, it must be captured

by changing exposures to the factors” (Bekaert et al., 2014, p. 2623). They find little

evidence of global contagion but sizable domestic one during the GFC.

The focus of this paper is the measurement of financial market interdependence and

contagion – rather than the analysis of its transmission channels. The above-mentioned

factor models can have shortcomings in this regard. First, a limited set of observed struc-

tural variables might not be sufficient to capture time-varying market interdependence.

Second, previous studies typically use weekly or monthly return observations (Bekaert

et al., 2005; Baele and Inghelbrecht, 2010; Bekaert et al., 2014). However, since stock

market crises and subsequent contagion effects are often short-lived, spanning only a few

Chile and Brazil and some evidence of contagion from Argentina. Lastly, note that many approaches
to identify contagion can be linked to a factor structure for returns (Dungey et al., 2005).

2Cho et al. (2015) extend the model of Baele and Inghelbrecht (2010) by additionally incorporating crisis
dummies in the loadings equation.
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days or even less, analysing weekly or monthly data could average out short occurrences

of contagion. Finally, previous work has often relied on exogenously defined crisis periods

while the results of contagion tests can strongly depend on the windows used to define

these periods (Billio and Pelizzon, 2003).3

We develop an unobserved factor model with time-varying factor loadings and stochas-

tic volatility to study interdependence and contagion in European stock markets using

data at daily frequency.4 In this framework, the time-varying degree of a market’s in-

tegration is measured by the excess return variation explained by the (‘normal times’)

common return component (Bekaert and Harvey, 1995; Pukthuanthong and Roll, 2009).

By contrast, we consider a situation as indicative of contagion where a country’s ex-

posure to a common shock suddenly increases and exceeds what would be implied by

time-varying interdependence during ‘normal times’. To operationalise this distinction,

we model a country’s time-varying exposure to the common factor as the sum of a random

walk component and a Markov-switching component. The random walk process captures

slowly-evolving observed drivers of market interdependence and fundamentals that are

inherently unobservable as well as cyclical variation in integration.5 The regime-switching

component identifies days and countries for which the transmission channel of common

European shocks suddenly widens, often indicative of contagious shock transmission.6

Our approach relates to existing factor models that have been applied to study financial

market integration and contagion. However, our analysis only uses excess stock returns as

input and provides a flexible decomposition into common (European) and idiosyncratic

shocks, at the cost of ignoring the economic and financial channels of interdependence

and contagion. Therefore, the model can be to some extent viewed as a fully ‘unobserved

components version’ of the models used in Baele and Inghelbrecht (2010) and, somewhat

less so, in Bekaert et al. (2014).

3Exceptions include Bae et al. (2003), Gravelle et al. (2006) and Ciccarelli and Rebucci (2007), who do
not assume an exact crisis period to identify contagion.

4The model belongs to the class of factor stochastic volatility models (Pitt and Shephard, 1999; Aguilar
and West, 2000; Chib et al., 2006) with time-varying loadings (Lopes and Carvalho, 2007; Del Negro
and Otrok, 2008).

5Iseringhausen and Vierke (2019) have followed a similar approach for modeling business cycle volatility.
6Baele and Inghelbrecht (2010) note that when adding a third regime to their specification, this exhibits
spike-like behavior, potentially reflecting non-fundamental events and contagion. Since the random
walk process captures slow-moving and cyclical changes, this is how we interpret the regime-switching
component in our model. Using a somewhat different idea, Gravelle et al. (2006) apply a factor model
with regime-switching loadings and volatilities to study contagion in currency and bond markets.
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The approach put forward in this paper to quantify contagious cross-market trans-

mission of shocks can be linked to existing approaches and definitions of contagion. Mo-

tivated by the definition of contagion as “...the comovement in excess of that implied by

the factor model” (Bekaert et al., 2014, p. 2598), our focus lies on sudden changes in

factor exposures, which go beyond both slowly-evolving structural and cyclical dynamics.

In our reduced-form model we remain agnostic about whether such shifts are linked to

fundamental-based contagion, e.g. due to trade linkages, or non-fundamental contagion,

e.g. due to ‘wake-up calls’ (see Forbes, 2012, for a discussion of different contagion chan-

nels). Moreover, a sudden rise in a country’s factor exposure increases bilateral return

correlations which – on days with sizable common shocks – is consistent with previous

work that “...defines contagion as a significant increase in cross-market linkages after a

shock to an individual country (or group of countries)” (Forbes and Rigobon, 2001, p.

44). Similarly to other factor-based approaches, we do not identify the shocks’ sources.

However, combining the timing of increased factor exposure with qualitative information

on certain events can support this. Lastly, our model in principle allows large shocks

to propagate differently than small shocks. This relates to previous work emphasising

the importance of non-linearities and focusing on the (co-)occurrence of extreme returns,

rather than return correlations, when studying contagion (Bae et al., 2003).

Our contribution to the literature is threefold. First, by relying on a factor model

where both the time-varying loadings and the common factor are unobserved, no choice is

required as to which variables drive interdependence and how to proxy common European

shocks. Second, we measure events of contagion using daily return data. While this can

help to identify short-lived events as opposed to using lower-frequency observations, the

computational burden of standard algorithms to estimate factor models involving multiple

unobserved states, quickly increases with both the cross-sectional and the time dimension.

However, sparse matrix algorithms (see, e.g., Chan and Jeliazkov, 2009; McCausland

et al., 2011) allow for fast posterior sampling of most of the model’s unobserved states,

even when using a large dataset of daily stock returns. Finally, our model does not restrict

the occurrence of possible contagion to pre-defined crisis periods but determines days

with excessive common shock exposure endogenously. Moreover, in contrast to ‘model-

free’ approaches comparing (adjusted) correlation coefficients over different periods, our

approach can quantify the relevance of a possibly contagious shift in a market’s common
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factor exposure for its total return on a given day.

When applying our factor model to daily excess returns of 19 European stock market

indices over the period 02/01/1995–30/04/2025, we obtain the following results. First, the

proposed model captures most of the cross-market correlation. Second, before 2011/12

the average comovement of European stock markets has been characterised by an in-

creasing trend. However, afterwards there is some evidence of decoupling. Third, we

find sudden increases of varying frequency in the exposures of various countries to the

common European factor during different periods.7 The majority of abrupt shifts falls on

dates that can be associated with well-known events and in most cases these constitute

evidence of contagion. Lastly, to provide further support for our model, we conduct a

stylised out-of-sample forecasting exercise for measures of downside risk, Value-at-Risk

and expected shortfall. The results show that i) adding a Markov-switching component

to the factor loadings generally improves forecasts compared to a nested specification and

ii) our model can in several cases improve upon a frequently used time-varying volatility

(GARCH) model.

The remainder of the paper is structured as follows: Section 2 introduces the factor

model with time-varying and composite loadings and discusses estimation issues as well as

prior choices. The results are presented and discussed in Section 3. Section 4 concludes.

2 A factor model with composite loadings

2.1 Empirical specification

Our empirical analysis assumes that excess returns of a country’s stock market index

are driven by both a common return factor and a country-specific return component. In

particular, we specify the excess return y of country i in period t in deviation from its

country-specific mean as

yit = βitft + εit, i = 1, ..., N, t = 1, ..., T, (1)

7Since our Bayesian approach provides (posterior) probabilities to be in a specific regime, the labeling
of high factor exposure days in our discussion is always conditional on a probability threshold.
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where ft is the common return factor, βit is the country-specific factor exposure or loading

and εit is the country-specific return factor.8 Equation (1) is consistent with asset pricing

theory, in particular the (international) CAPM (see, e.g., Bekaert and Harvey, 1995;

Bekaert et al., 2014), where a market’s integration is the larger the higher the variance

of the common component βitft is, relative to the variance of εit. The common return

factor and the idiosyncratic component are assumed to follow stationary AR(1) processes

ft = ρft−1 + egt/2κt, κt ∼ t(νκ), |ρ| < 1, (2)

εit = θiεi,t−1 + ehit/2ϵit, ϵit ∼ t(νϵ,i), |θi| < 1, (3)

where the shocks to the country-specific component, ϵit, are assumed uncorrelated across

countries. To allow for ‘volatility clustering’ (see, e.g., Mandelbrot, 1963), both shocks

feature stochastic volatility where the latent volatility processes also follow stationary

AR(1) processes

gt = µg + ϕg(gt−1 − µg) + ηt, ηt ∼ N (0, σ2
η), |ϕg| < 1, (4)

hit = µh,i + ϕh,i(hi,t−1 − µh,i) + ψit, ψit ∼ N (0, σ2
ψ,i), |ϕh,i| < 1. (5)

In addition, we allow for excess kurtosis beyond what is implied by the volatility dynamics

by relaxing the assumption of Gaussianity (see, e.g., Bai et al., 2003). Instead, we assume

that the (standardised) return shocks are t-distributed with νκ and νϵ,i degrees of freedom.

The main methodological contribution of this paper is the introduction of unobserved

time-varying factor loadings that account for both slowly-evolving changes and sudden

shifts in countries’ exposure to the common factor. Specifically, the factor loadings βit

are modeled as the sum of two components

βit = β̃it + γit, (6)

where the first component follows a driftless random walk process

β̃it = β̃i,t−1 + ωit, ωit ∼ N (0, σ2
ω,i). (7)

8An alternative to subtracting the country-specific mean for each series would be to include a country-
specific constant in Equation (1).
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The second component follows a two-state, first-order Markov-switching process

γit = γ0,i + γ1,iSit, Sit ∈ [0, 1], γ1,i > 0, (8)

where γ1,i > 0 ∀ i = 1, ..., N is the standard normalisation to identify the states (see,

e.g., Hamilton, 1989) and with transition probabilities qi and pi defined as

Pr(Sit = 0|Si,t−1 = 0) = qi, P r(Sit = 1|Si,t−1 = 1) = pi. (9)

A few remarks regarding our model specification are appropriate. First, allowing for

fat-tailed (standardised) shocks to both the common and the country-specific factor is

crucial to avoid misspecification when estimating our model using daily data of equity

returns. Chiu et al. (2017) show that volatility estimates are upward biased when the

model innovations, in the presence of larger tails, are erroneously assumed to be Gaussian.

Even more importantly, this should at least reduce the chance that regime changes in the

exposures to the common factor mistakenly capture data dynamics that are actually due

to non-normal idiosyncratic return shocks.9 Second, while the model could in principle be

extended to allow for more than two regimes in the exposures to the common factor, two

regimes suffice to illustrate our modeling idea, allow for a straightforward interpretation,

and keep the computational burden manageable. We also provide evidence that one

common factor in Equation (1) captures most of the cross-sectional dependence in excess

returns of European stock indices. Since our sample consists of countries from the same

region, the factor captures both region-specific and global return shocks, which have been

included separately in other studies (see, for example, Bekaert et al., 2005).

As it stands, the proposed factor stochastic volatility model with composite time-

varying loadings is not identified. First, while the product of factor and loadings βitft is

identified, the relative scales and signs of its constituent components are not. Multiplying

the loadings by a constant c while dividing the common factor by the same c, would leave

the product unchanged, making the two models equivalent. To address this identification

issue, we normalise the overall average of the random walk component of the factor

loadings to 1, i.e. 1
N

∑N
i=1

1
T

∑T
t=1 β̃it = 1 (see also Everaert and Pozzi, 2016). Besides

identifying the scale of both components, this normalisation also identifies the sign of

9Section 3.4 discusses this issue in greater detail.
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the factor and the loadings. Moreover, to ensure that β̃it reflects the exposure of each

country to the common factor during ‘normal times’, i.e. to identify its level, we set

γ0,i = 0 ∀ i = 1, ..., N .

2.2 Bayesian estimation and prior choice

The factor stochastic volatility model with composite time-varying loadings outlined

above corresponds to a state space model with the observation equation given by merging

Equations (1), (6) and (8), and the state Equations (2)-(3), (4)-(5), (7) and (9) describing

the laws of motion for the unobserved components. This paper relies on Markov Chain

Monte Carlo (MCMC) methods for estimation. The proposed model is highly nonlinear

due to the multiplicative link between the unobserved factor and the loadings and be-

cause of the stochastic volatility components, which enter exponentially into Equations

(2)-(3). Thus, the standard application of the Kalman filter in combination with the

maximum likelihood method is not feasible. Instead, a Gibbs sampling procedure is ap-

plied. Specifically, the complex model is split into blocks of parameters and components

that are linear conditional on the other blocks. By sampling repeatedly from these blocks,

we obtain parameter draws from the joint posterior distribution. We iterate the Gibbs

steps 1,100,000 times and drop the first 100,000 draws as a ‘burn in’ period. This ensures

convergence to the ergodic distribution. From the remaining 1,000,000 draws we save

every 100th draw.10 The results presented in Section 3 are thus based on 10,000 draws.

Our dataset at daily frequency is larger than those of other papers using factor models of

similar complexity and computation becomes feasible due to fast matrix algorithms for

sampling most of the unobserved states (Chan and Jeliazkov, 2009; McCausland et al.,

2011; Chan and Hsiao, 2014).11 A detailed description of the MCMC algorithm can be

found in Appendix A.

Table 1 contains the prior distributions for the model parameters. The prior values

can be considered almost uninformative for the majority of parameters. However, we set

somewhat more informative priors on the transition probabilities to support a clear-cut

differentiation between regimes (see Bianchi et al., 2017, for a similar approach). The

10We apply this so-called ‘thinning’ purely for computational reasons to deal with memory limits when
working with a large number of daily observations (see also Gelman et al., 2011).

11From a computational perspective, sampling the regime indicators S remains a bottleneck.
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transition probabilities account for our belief that elevated exposure to common shocks

is a rare event and stock markets are likely to be in the ‘normal regime’ most of the days.

The prior means for q and p imply an unconditional probability to be in the tranquil

regime of around 83%. Our prior configuration for γ1 reflects a loose expectation that

the total common factor exposure βit for Sit = 1 is twice as large as the grand mean of

β̃, which is normalised to 1 (see Section 2.1). Finally, the upper bound of the uniform

priors for the degrees of freedom parameters νκ and νϵ is based on the consideration

that for ν > 50 the t-distribution becomes indistinguishable from the standard normal

distribution.

Table 1: Prior distributions

Para. Description Density Specification

a0
√
A0

µg Intercept common volatility N (a0, A0) 0.00
√

5

µh Intercept idiosyncratic volatility N (a0, A0) 0.00
√

5

ϕg AR parameter common volatility N (a0, A0)I(|ϕg| < 1) 0.95 1.0

ϕh AR parameter idiosyncratic volatility N (a0, A0)I(|ϕh| < 1) 0.95 1.0

ρ AR parameter common factor N (a0, A0)I(|ρ| < 1) 0.00 1.0

θ AR parameter idiosyncratic factor N (a0, A0)I(|θ| < 1) 0.00 1.0

γ1 Factor loading shift if St = 1 N (a0, A0)I(γ1 > 0) 1.00 1.0

Mean S.D.

q Pr(St = 0|St−1 = 0) beta(u00, u01) 0.9 0.1

p Pr(St = 1|St−1 = 1) beta(u11, u10) 0.5 0.1

Mean S.D.

σ2
κ Shock variance of common volatility IG(c0, C0) 0.05 0.10

σ2
ψ Shock variance of idiosyncratic volatility IG(c0, C0) 0.05 0.10

σ2
ω Shock variance of random walk loadings IG(c0, C0) 0.01 0.10

¯
ν ν̄

νκ d.f. of common factor U(
¯
ν, ν̄) 0 50

νϵ d.f. of idiosyncratic factor U(
¯
ν, ν̄) 0 50

Note: The underlying parameters of the inverse-gamma prior distributions for the volatility (loadings)

shocks are c0 = 2.25 (2.01) and C0 = 0.0625 (0.0101). The beta prior hyperparameters are u00 = 7.2,

u01 = 0.8, u11 = 12 and u10 = 12.
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3 Results

After a short description of the data, we start by presenting the (in-sample) common

and country-specific parameter estimates. We discuss the model’s ability to capture the

correlation structure of European stock markets and the evolution of markets’ integration.

Next, the occurrence of regime shifts in the factor exposures is discussed in detail. We

end with a stylised out-of-sample forecasting exercise and a number of robustness checks.

3.1 Data

Our dataset contains daily excess returns for the period 02/01/1995–30/04/2025 (T =

7, 852) for 19 European countries: Austria, Belgium, Czech Republic, Denmark, Finland,

France, Germany, Greece, Hungary, Ireland, Italy, the Netherlands, Norway, Poland,

Portugal, Spain, Sweden, Switzerland, and the United Kingdom. Excess returns are

computed as log-differences (×100) of the country-specific MSCI equity price index de-

nominated in U.S. dollars minus the 3-month U.S. Treasury-bill rate (see, e.g., Bekaert

et al., 2009).12 The MSCI price index is a value-weighted equity index that covers a mar-

ket’s large and mid cap segments (around 85% of the investable market capitalisation) and

does not include dividends.13 The MSCI data from Morgan Stanley is obtained through

Refinitiv Datastream. Appendix B contains time series plots and summary statistics.

3.2 Parameter estimates and unobserved components

Figure 1 plots the posterior mean and 95% highest density interval (HDI) of the common

European return factor along with its time-varying volatility. The size of common shocks

clearly varies over time and the identified peaks in volatility correspond to well-known

events that had a significant impact on European stock markets. We clearly identify

as common shocks, for example, the Russian financial crisis in 1998, the September 11

attacks in 2001, the financial crisis leading to the failure of large banks in the U.S., the

12The Treasury-bill rates are provided by the U.S. Federal Reserve in annualised percentage terms and
obtained from the Federal Reserve Economic Data (FRED) database. We convert the rates to daily
numbers as follows: rdailyt =

(
(1 + ryearlyt /100)1/360 − 1

)
× 100. Moreover, we linearly interpolate the

treasury rates on non-trading days in the United States.
13Daily MSCI total return indices (including reinvested dividends) for our sample are only available from
2001. However, the average correlation across countries between the returns of both indices is 0.998.
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European sovereign debt crisis in 2010, the ‘Brexit’ vote in June 2016, the onset of the

Covid-19 pandemic in Europe in March 2020, Russia’s invasion of Ukraine in February

2022, as well as the announcement of sizable tariffs by the U.S. government in April 2025.

Figure 1: Common factor and volatility of common shocks

(a) Common factor: ft (b) Volatility of common shocks: egt/2

Posterior mean 95% Highest density interval (HDI) Event dates

Notes: The grey lines refer to particular market shocks. These are in chronological order: 27/10/1997

(crash after Asian economic crisis), 17/08/1998 (Russian financial crisis), 10/03/2000 (Dot-com bub-

ble), 11/09/2001 (September 11 attacks), 09/10/2002 (stock market downturn), 16/09/2008 (GFC),

27/04/2010 (European sovereign debt crisis), 01/08/2011 (stock markets fall), 24/06/2016 (‘Brexit’

vote), 16/03/2020 (Covid-19), 24/02/2022 (Russian invasion of Ukraine), and 03/04/2025 (U.S. tar-

iffs announcement).

Table 2 contains the posterior estimates of the parameters driving the unobserved

processes of the common European return factor and its volatility. Common shocks

do not show meaningful persistence since the 95% HDI of the parameter ρ includes

zero. Shocks to the volatility process on the other hand seem to be highly persistent, a

characteristic of financial markets known as ‘volatility clustering’ and first documented

by Mandelbrot (1963). The standardised common shocks contribute somewhat to the

fat tails of the excess return distributions as indicated by a moderately high degrees

of freedom parameter νκ. The last two columns of the table suggest that our MCMC

algorithm works well, i.e. the null hypothesis of non-convergence cannot be rejected and

the (thinned) draws from the posterior distributions exhibit little serial correlation.
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Table 2: Posterior estimates of common parameters

Parameter Mean S.D. P2.5 P97.5 CD IF

µg −0.449 0.146 −0.743 −0.168 0.574 1.144

ϕg 0.988 0.003 0.982 0.992 0.984 1.530

σ2
κ 0.022 0.003 0.016 0.029 0.501 1.788

ρ 0.010 0.012 −0.014 0.035 0.453 1.127

νκ 16.320 4.155 10.958 26.453 0.632 5.722

Notes: This table contains the posterior statistics (mean, standard deviation, and 95%

highest density interval) of all common model parameters. CD and IF refer, respectively,

to the p-value of the Geweke (1992) convergence diagnostic and the inefficiency factor,

both computed using 4% tapered autocovariance matrices (LeSage, 1999).

Figure 2 presents the posterior estimates of the random walk component of the factor

loadings β̃, and the sum of β̃ and the regime-switching component γ on days with a

large probability to be in the high factor exposure regime, i.e. Pr(Sit = 1 > 0.8) and

Pr(Sit = 1 > 0.9).14 Overall, the random walk component captures slowly-evolving

changes in countries’ factor exposure as well as cyclical fluctuations. While in some

countries, such as Hungary, Italy, and Poland, the fundamental exposure to the common

factor somewhat increased, in other countries such as France or Germany, the random

walk component does not show a clear trend. In addition to this basic exposure that is

likely fundamental-driven or reflects changing integration over the cycle, most countries

are showing occasional, and some more frequent, high-probability regime switches in their

factor loadings, reflecting unusually large exposure to the common European factor.

Section 3.4 takes a closer look at dates with a high probability of increased common

factor exposure and shows that many relate to well-known market events. Table C-1 in

Appendix C contains the country-specific posterior statistics of the loading shift γ1 and

the transition probabilities q and p. First, the loading shifts are of significant magnitude

and range from around 0.1 to 1.1. Second, conditional on being in the ‘normal regime’ the

probability of switching to the contagion regime is relatively low in most countries. Once

in the high common factor exposure regime, the probability to remain there is around

40% to 60% with the posterior standard deviations being relatively large.

14These thresholds are chosen arbitrarily and solely for illustrative purposes. Table 4 contains the number
of days in the high factor exposure regime for different thresholds.
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Figure 2: Factor loadings (random walk component and high exposure regime days)

Posterior mean β̃it 95% HDI Posterior mean β̃it + γit|(Pr(Sit = 1) > 0.8) Posterior mean β̃it + γit|(Pr(Sit = 1) > 0.9)
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Figure 3: Stochastic volatility of country-specific shocks

Posterior mean ehit/2 95% HDI



Figure 3 plots the stochastic volatility series of each country’s idiosyncratic return

shocks. While country-specific volatility shows certain similarities across countries, e.g.

volatility shoots up during the financial crisis of 2007–08, the volatility series also have

distinct differences. Table C-1 in Appendix C contains the remaining country-specific

parameters, i.e. the stochastic volatility parameters, shock persistence parameters and

the degrees of freedom of country-specific return shocks. Notably, the (standardised)

country-specific shocks seem to drive the high kurtosis in the excess returns of many

countries as indicated by relatively low degrees of freedom parameters νϵ.

3.3 Cross-market correlation and financial integration

Before we discuss regime shifts in the factor loadings in detail, it is informative to as-

sess how well the proposed factor model fits the correlation structure of European stock

markets and how interdependence between markets has evolved over time. Figure 4(a)

shows the average pairwise model-implied stock market correlation along with the aver-

age rolling window correlation, computed over a centred window of 100 days. Overall,

both measures evolve very similarly over the sample period.15 However, the model-implied

measure features more pronounced spikes, i.e. sudden changes in the average cross-market

correlation, whereas these dynamics are naturally difficult to capture for a rolling win-

dow measure. The average correlation increased from a low of around 0.2 in 1996 to

almost 0.9 in 2010, before falling sharply and averaging around 0.5-0.6 in the last ten

years. Figure 4(b) confirms that our one-factor specification with time-varying loadings

captures most of the correlation structure of European stock markets. First, the average

correlation of the residuals across markets is virtually zero.16 Second, the average abso-

lute residual correlation is also quite low and, in particular, does not exhibit sizable time

variation or trends. The latter two results imply the existence of, on average, small and

relatively stable negative and positive cross-market residual correlations. Due to these

characteristics, we consider them of limited relevance for our analysis of financial market

interdependence and contagion effects.

15For comparison, the average unconditional pairwise correlation across markets is 0.64.
16We measure the residual correlation on a rolling window basis since the model-implied cross-market
correlation of ε is zero by assumption.
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Figure 4: Time-varying cross-market correlations of excess returns and residuals

(a) Correlation of excess returns (b) Residual correlation (rolling window)

Posterior mean 95% HDI Rolling window correlation of returns

Notes: Figure 4(a) shows the model-implied average cross-market correlation of excess returns over time

alongside a simple rolling window correlation measure. Figure 4(b) shows the posterior distribution of

the average rolling window (absolute) correlation of the model’s residuals across markets. The rolling

window measures are computed using a centred 100-day window.

To get an idea of how interdependent, or alternatively, how integrated stock markets

are, a natural measure is the share of variation in excess returns that is explained by the

common component. In the case of a perfectly integrated market, one would expect all

the variation in a country’s excess returns to be explained by the common component

whereas the dynamics in a separated market should be driven by the country-specific

component (Bekaert and Harvey, 1995). Specifically, Pukthuanthong and Roll (2009) use

the R2 from a regression of returns on a certain number of principal components as a

measure of integration.17 We apply the same basic idea and compute the variance share

explained by the random walk common component conditional on the unobserved states,

i.e. the measure of financial market integration (FMI) adjusted for short-lived regime

switches, as follows

FMIit =
V ar[β̃itft|β̃it, gt]
V ar[yit|β̃it, gt, hit]

=
β̃
2

ite
gt νκ

(νκ−2)(1−ρ2)

β̃
2

ite
gt νκ

(νκ−2)(1−ρ2) + ehit
νϵ,i

(νϵ,i−2)(1−θ2i )

. (10)

17See Billio et al. (2017) for a comparison of different empirical approaches to assess market integration.
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Figure 5: Measure of financial market integration (FMI)

Posterior mean FMIit 95% HDI Trend FMIit (Hodrick-Prescott filter with λ = 108)



Figure 5 shows the evolution of this integration measure per country. Consistent with

Figure 4(a), most markets show an increasing degree of integration prior to and even dur-

ing the Great Recession. This is in line with results reported in Lehkonen (2014). Using

the integration measure of Pukthuanthong and Roll (2009) and daily equity data over

the period 1987–2011, the author shows that average integration in developed countries

exhibits an increasing trend until the end of the sample but drops during the financial

crisis. Prior studies have discussed the importance of European political and economic

integration, in particular the European Monetary Union, for the pre-GFC increase in

stock market integration in the region (see, for example, Fratzscher, 2002; Baele, 2005;

Hardouvelis et al., 2006; Bekaert et al., 2013). Moreover, the results match those reported

in Niţoi and Pochea (2019) who use a Dynamic Conditional Correlation (DCC) model to

measure stock market co-movement in the European Union. In a similar vein but focusing

on tail dependence as a measure of cross-market linkages, Dominicy et al. (2017) report

increasing tail dependence coefficients across equity markets until 2013 after those had

significantly dropped in 2007. In addition, our results suggest that since around 2011/12,

integration has decreased in the majority of European stock markets. Over the past ten

years countries’ integration levels have evolved differently, with some showing increasing

integration (e.g. Greece, Italy, and Poland), others showing decreasing integration (e.g.

Denmark, the Netherlands, and Portugal), and a third group with relatively stable inte-

gration levels (e.g. Finland, Germany, and Spain). While stock market integration still

varies widely, with some countries almost perfectly integrated and others where excess

returns are to a large extent determined by country-specific shocks, in most countries

financial integration towards the end of the sample remains higher than at its beginning.

3.4 Sudden shifts in factor exposures and contagion

This section takes a closer look at the estimation results for the regime-switching compo-

nent of the time-varying factor loadings. Table 3 contains the unconditional probabilities

that, on a particular day, a market experiences elevated exposure to the common Eu-

ropean factor. The results indicate that the risk of increased common factor exposure

differs across markets with countries like Austria, Czech Republic, Poland, Spain, and

Sweden being, unconditionally, at lower risk of contagious effects compared to other coun-
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tries such as France, the Netherlands, Norway, Portugal, and Switzerland, which all have

larger unconditional probabilities to be in the high factor exposure regime. However, the

posterior distributions of all unconditional probabilities are relatively wide and, impor-

tantly, these probabilities do not take into account the estimated loading shifts γ1. Thus,

they alone are not informative about the return effects of potential regime shifts. Figure

C-1 in Appendix C shows the probabilities to be in the high factor exposure regime on

each day and for each of the 19 stock markets. The results complement the plots of

the factor loadings in Figure 2. Overall, we observe distinct differences across markets

regarding the risk of sudden increases in factor exposures.

Table 3: Unconditional probabilities of high common factor exposure regime (in %)

Country Mean P2.5 P97.5 Country Mean P2.5 P97.5

AT 13.61 5.52 28.76 IT 17.65 1.98 45.30

BE 28.41 9.58 49.39 NL 41.21 10.82 61.21

CZ 13.52 3.65 35.30 NO 36.15 22.54 50.24

DK 31.95 10.91 52.19 PL 11.34 1.49 51.60

FI 17.07 0.26 48.04 PT 34.93 20.19 50.69

FR 37.86 17.08 54.92 ES 7.43 2.04 20.26

DE 23.99 10.85 41.92 SE 2.84 0.25 36.43

GR 34.40 22.15 47.93 CH 32.97 6.52 62.25

HU 21.36 2.45 37.43 GB 18.83 8.86 32.87

IE 15.40 4.40 35.56

Notes: This table contains the posterior distributions of the unconditional probabilities

to be in the high common factor exposure regime: (1−qi)
(2−qi−pi)

× 100.

Table 4 contains the number of days in the high factor exposure regime per country

and the average expected effect on excess returns for different probability thresholds. The

table confirms that contagion days, defined as those on which the exposure to the common

European factor is elevated, are relatively rare events. The share of contagion days lies

between 3.2% for Pr(Sit = 1) > 0.5, and 0.1% for Pr(Sit = 1) > 0.9. Moreover, on

average, those days correspond with negative realisations of the common return factor as

indicated by the largely negative expected return effects. This is in line with the intuition

of financial market analysts and academics that usually associate events of contagion with

negative, instead of positive, return shocks. This being said, our model specification is
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symmetric in the sense that it allows for ‘positive contagion’ effects, i.e. shifts in the

factor loadings on days with positive common return shocks. In what follows, we will

also shed light on some of these cases.

Table 4: Number of days with high common factor exposure and average return effects

Probability of Sit = 1

Country > 50% > 60% > 70% > 80% > 90%

AT 54 (−0.52) 28 (−0.86) 16 (−0.99) 3 (0.21) 0

BE 134 (−0.04) 45 (−0.09) 11 (0.06) 5 (0.44) 1 (1.57)

CZ 40 (−0.40) 17 (−0.31) 11 (−0.10) 7 (−0.95) 3 (−3.09)

DK 347 (−0.05) 121 (−0.12) 35 (−0.29) 9 (−0.63) 0

FI 1 (−0.01) 0 0 0 0

FR 563 (0.00) 162 (0.01) 59 (0.06) 18 (0.10) 3 (0.12)

DE 151 (−0.00) 57 (0.03) 26 (0.09) 9 (0.44) 5 (0.80)

GR 524 (−0.02) 207 (−0.06) 92 (−0.08) 46 (−0.10) 16 (0.02)

HU 202 (−0.09) 88 (−0.20) 33 (−0.32) 13 (−0.16) 4 (0.07)

IE 44 (−0.14) 21 (−0.20) 13 (−0.38) 12 (−0.47) 5 (−0.16)

IT 18 (−0.64) 5 (−1.86) 3 (−2.50) 2 (−2.94) 1 (−3.93)

NL 752 (−0.01) 162 (−0.06) 38 (−0.05) 7 (0.03) 0

NO 903 (−0.06) 375 (−0.12) 176 (−0.28) 67 (−0.61) 23 (−1.00)

PL 18 (−0.67) 11 (−0.85) 10 (−1.12) 6 (−1.05) 4 (−1.78)

PT 603 (−0.01) 204 (−0.07) 67 (−0.22) 29 (−0.13) 10 (−0.28)

ES 23 (−0.20) 14 (−0.39) 11 (−0.28) 6 (−0.91) 6 (−0.91)

SE 8 (−0.38) 7 (−0.60) 6 (−0.66) 5 (−0.69) 4 (−0.59)

CH 212 (−0.04) 50 (−0.12) 10 (−0.12) 3 (−0.13) 0

GB 187 (−0.09) 104 (−0.11) 58 (−0.15) 29 (−0.19) 17 (−0.41)

Total 4784 (−0.05) 1678 (−0.12) 675 (−0.21) 276 (−0.32) 102 (−0.54)

Notes: This table contains the number of days where Pr(Sit = 1) exceeds the threshold. The number in

brackets refers to the average expected size of the return effect (in %), i.e. 1
K

∑
Pr(Sit = 1)γ1,ift, where

K denotes the number of high exposure days and the sum runs over all these dates.

When analysing the days with high probabilities of elevated common factor exposure

in more detail, many of them relate to well-known market events. Table 5 shows selected

dates with likely shifts in the country-specific loadings and we will discuss some of these

in more detail. For illustrative purposes, here we show dates and countries for which the
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probability of Sit = 1 exceeds 80% and, in addition, exceeds 90% for at least one country.

The first number refers to the expected return effect of the regime-switching component

whereas the second number (in brackets) is the total excess return on that day. We

identify sudden increases in the factor exposure of the stock markets in Hungary, Ireland,

Norway, Poland and Portugal during the global crash due to the economic crisis in Asia

in late October 1997. While these markets dropped significantly on 28/10/1997, they

partly recovered one day later. Contagion effects of this crisis, especially affecting Eastern

European countries, have been previously documented (see, e.g., Gelos and Sahay, 2001).

Around the time of the ‘Russian cold’ in 1998, which has been clearly identified as a

common shock to European countries (see Figure 1), we identify excessive factor exposure

in Greece, Norway, Portugal and Sweden with negative return effects between around 2%

and 4% (whereas Sweden recovered shortly after). In addition, Hungary saw the largest

negative excess return on 27/08/1998 (-14.9%), but the still high probability of widened

common factor exposure on this day (0.78) is slightly below the (arbitrarily) chosen

threshold for this table. In the same vein, Gelos and Sahay (2001) and Schotman and

Zalewska (2006) find that the Hungarian stock market was much more strongly affected

by both the Asian crisis and the ‘Russian cold’ compared to the remaining Eastern Eu-

ropean markets. Moreover, we identify some excessive factor exposure around the burst

of the dot-com bubble and during the international financial markets turmoil following

the September 11 attacks. In the year 2002, which experienced a global stock market

downturn with massive declines in July and September, we find a significantly widened

factor exposure and negative return effects for Denmark and Norway. In addition, several

contagious days in European stock markets are identified when the U.S. subprime mort-

gage market crisis began in August 2007 and when the Great Financial Crisis fully hit

in January 2008. At this time, panic spread as market participants started to anticipate

a recession in the U.S. and its potentially adverse consequences for Europe. Contagious

spillovers from the U.S. to many European markets during this period were also found

by Harb and Umutlu (2024), which test for breaks in correlations. By contrast, Bekaert

et al. (2014) only find small evidence of equity market contagion in Europe during the

GFC stemming from the U.S. and global financial markets. However, they find strong

evidence of domestic cross-sector contagion, a phenomenon that our cross-country study

does not consider.
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Table 5: Selected days with high common factor exposure and expected return effects

Date Countries

01/04/1997 NO −1.6 ( −5.4 )
28/10/1997 HU −3.2 (−19.1 ) IE −1.8 ( −7.6 ) NO −2.3 ( −5.2 ) PL −3.8 (−11.6 )

PT −1.5 ( −3.7 )
29/10/1997 HU 4.2 ( 12.4 ) IE 2.2 ( 4.4 ) NO 2.7 ( 4.6 ) PL 4.4 ( 7.9 )

PT 1.9 ( 5.1 )
12/01/1998 GR −2.1 ( −5.3 ) HU −2.7 ( −9.3 ) NO −1.9 ( −5.4 )
27/08/1998 GR −3.1 ( −8.2 ) NO −2.7 ( −9.5 ) PT −1.7 ( −6.3 )
08/10/1998 SE −3.9 ( −8.4 )
09/10/1998 SE 0.9 ( 3.0 )
12/10/1998 SE 5.3 ( 11.4 )
27/04/2000 NO −1.4 ( −3.5 )
22/09/2000 PT 1.2 ( 4.1 )
14/03/2001 GR −1.4 ( −5.4 ) NO −1.3 ( −3.7 )
22/03/2001 IE −2.8 ( −6.7 ) PT −2.0 ( −5.0 ) CH −1.1 ( −7.1 )
23/03/2001 IE 1.5 ( 3.4 ) PT 1.1 ( 3.3 )
26/03/2001 IE 1.5 ( 3.9 )
20/09/2001 GR −2.5 ( −5.7 ) NO −2.3 ( −5.1 )
21/09/2001 BE −0.7 ( −3.8 ) NO −2.1 ( −7.4 )
27/12/2001 NO 1.2 ( 3.6 )
22/07/2002 DK −1.8 ( −6.1 ) NO −2.7 ( −5.4 )
23/07/2002 DK −1.1 ( −4.9 ) NO −1.7 ( −5.6 )
25/07/2002 DK 1.4 ( 5.5 ) GR 2.3 ( 3.0 ) NO 2.0 ( 4.8 )
11/10/2002 GR 2.8 ( 4.9 ) NO 2.1 ( 4.3 )
04/11/2002 GR 1.8 ( 3.7 ) NO 1.3 ( 3.0 )
01/09/2005 GR 1.0 ( 2.9 )
16/08/2007 CZ −2.1 ( −5.6 ) GR −2.1 ( −4.4 ) PT −1.1 ( −4.0 )
17/08/2007 GR 1.5 ( 4.7 )
21/01/2008 DE −1.3 ( −8.4 ) PT −2.0 ( −7.0 ) ES −2.7 ( −9.1 )
23/01/2008 DE −0.6 ( −5.2 ) ES −1.4 ( −5.1 )
24/01/2008 CZ 2.9 ( 11.4 ) GR 3.3 ( 9.0 ) NL 0.7 ( 7.0 ) ES 2.4 ( 7.9 )
05/02/2008 PT −1.2 ( −4.4 ) ES −1.7 ( −6.5 )
17/03/2008 GB −0.8 ( −5.3 )
25/03/2008 PT 1.3 ( 5.0 )
06/10/2008 DK −3.1 (−13.5 ) PT −3.1 (−13.0 )
19/03/2009 GR 2.7 ( 8.3 ) PT 1.4 ( 5.9 )
29/10/2009 PT 0.6 ( 3.0 )
10/05/2010 BE 1.6 ( 10.3 ) FR 0.9 ( 10.3 ) HU 5.0 ( 16.2 ) NL 1.0 ( 9.0 )

PT 2.6 ( 11.8 )
22/09/2011 BE −0.9 ( −6.5 ) NO −2.2 ( −8.0 ) PL −3.6 (−11.2 ) GB −1.5 ( −6.5 )
14/12/2011 NO −1.1 ( −4.5 )
14/09/2012 AT 1.4 ( 6.2 ) HU 1.9 ( 6.3 ) NO 1.4 ( 4.6 )
23/10/2012 NO −1.1 ( −3.9 )
20/06/2013 NO −2.0 ( −6.0 )
03/03/2014 PL −2.1 ( −6.1 )
20/06/2016 GB 1.3 ( 5.7 )
24/06/2016 FR −1.1 (−10.1 ) GR −5.4 (−25.0 ) IT −2.0 (−15.7 ) ES −4.1 (−16.1 )

GB −2.8 (−11.5 )
27/06/2016 NL −0.6 ( −5.0 ) SE −4.7 (−10.5 ) GB −1.5 ( −6.1 )
28/06/2016 GB 0.9 ( 3.9 )
29/06/2016 GB 1.0 ( 5.1 )
24/04/2017 FR 0.5 ( 5.7 ) DE 0.9 ( 4.8 )
02/08/2019 GB −0.7 ( −2.7 )
05/08/2019 GB −0.5 ( −2.3 )
09/03/2020 NO −3.9 (−10.7 ) PT −2.4 ( −9.0 )
12/03/2020 IT −3.9 (−20.5 )
16/03/2020 CZ −3.2 (−11.0 ) IE −2.1 ( −7.3 )
18/03/2020 CZ −3.9 (−10.5 ) FR −0.7 ( −7.1 ) IE −2.9 ( −9.5 )
23/03/2020 GB −1.0 ( −6.0 )
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Date Countries

24/03/2020 DE 1.9 ( 10.2 ) PT 2.7 ( 10.7 ) GB 2.9 ( 11.0 )
26/03/2020 DK 1.3 ( 5.4 ) IE 1.8 ( 7.5 )
21/09/2020 GR −2.7 ( −5.6 ) HU −3.2 ( −6.8 ) NO −2.3 ( −6.3 )
09/11/2020 FR 0.6 ( 6.7 ) GR 3.0 ( 8.0 ) NO 2.5 ( 6.8 ) ES 2.1 ( 7.9 )
26/02/2021 NO −1.2 ( −4.6 )
19/07/2021 GR −1.6 ( −4.0 )
24/02/2022 CZ −3.7 ( −9.1 ) GR −3.6 ( −7.9 ) HU −4.9 (−17.4 ) PL −5.5 (−16.5 )

GB −2.1 ( −6.0 )
25/02/2022 HU 3.7 ( 10.8 ) PL 4.3 ( 11.1 ) GB 1.7 ( 4.9 )
09/03/2022 BE 1.4 ( 7.8 ) FR 0.9 ( 8.3 ) DE 1.6 ( 9.2 )
05/07/2022 GR −2.5 ( −6.6 )
04/11/2022 AT 1.7 ( 7.4 ) FR 0.4 ( 4.0 ) GR 2.1 ( 4.1 )
10/11/2022 DE 0.9 ( 5.3 )
15/03/2023 AT −2.4 ( −9.6 ) GR −3.0 ( −6.8 )
24/03/2023 GR −1.7 ( −5.2 ) NO −1.3 ( −4.8 )
14/11/2023 GR 1.6 ( 4.8 )
04/04/2025 NO −3.5 ( −9.4 ) GB −2.3 ( −6.8 )
07/04/2025 FR −0.6 ( −5.5 ) GR −3.2 ( −8.7 ) PT −1.6 ( −8.6 ) GB −1.8 ( −6.0 )
08/04/2025 GR 1.4 ( 6.8 ) GB 0.8 ( 2.6 )
09/04/2025 NO −0.9 ( −3.6 ) GB −0.7 ( −3.0 )

Notes: This table contains the dates where the model identifies elevated exposure to the common factor (Sit = 1) with probability
> 0.8 and additionally, for at least one country, with probability > 0.9. The first number refers to the expected return effect
(Pr(Sit = 1)γ1,ift) whereas the second number (in brackets) is the total excess return on that day (both in %).

On 10/05/2010 we observe a case of positive excess factor exposure, when several

European markets rose shortly in reaction to the agreement of support measures between

European policymakers and the IMF in the context of the sovereign debt crisis. When

the Federal Reserve released a worsened outlook for the global economy on 21/09/2011

and ‘Operation Twist’ did not succeed in containing financial markets’ concerns, several

European markets reacted much more strongly than what would have been implied by

market linkages during ‘normal times’. Also, the intensification of the Ukraine crisis

in early March 2014 unsettled investors in different markets but only its neighbouring

country Poland seemed to have been contagiously affected. In addition, the negative

stock market shock due to the ‘Brexit’ vote on 23/06/2016 (the result was announced on

the morning of 24/06/2016) appears to have spread to several other markets to an extent

that cannot be explained by ‘normal’ market linkages. We find elevated factor exposure

in France, Greece, Italy, and Spain. This is broadly in line with Burdekin et al. (2018),

who find that the last three countries, as well as Ireland and Portugal, were experiencing

the worst adverse stock market effects following the ‘Brexit’ referendum. In the case

of Ireland, Li (2019) reports a peak of the contagious effect three days after the vote.

In our case, we also find an increased probability of elevated exposure (around 65%) in

Ireland on 27/06/2016, however, below the threshold for inclusion in Table 5. Similarly,
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the ‘Brexit’ announcement had a particularly strong contagious impact on Sweden on

the Monday following the vote on Friday, supporting results reported in earlier studies

(Aristeidis and Elias, 2018). The drop was in this case driven by the banking sector and

by losses of companies with a large international exposure such as H&M. The change

in the loadings of the U.K. itself should not be interpreted as contagion but merely as

evidence that it was the origin of this particular common European shock. Moreover,

while equity markets in countries like the Netherlands and Germany were also hit by the

‘Brexit’ news shock, the model does only classify the shock transmission for the former

as contagious.

The Covid-19 pandemic was a major global shock that – in addition to major human

tragedy – caused large turmoil in financial markets (see, for example, Baker et al., 2020;

Iwanicz-Drozdowska et al., 2021; Arteaga-Garavito et al., 2024). The large-scale spread

of the Covid-19 pandemic in Europe started in March 2020, and we identify excessive

exposure in various countries. For some countries, these results are aligned with those

in Harb and Umutlu (2024), while for others they differ. When Russia invaded Ukraine

on 24/02/2022, countries in close proximity saw their stock markets plummeting (Yousaf

et al., 2022; Federle et al., 2024). Our analysis finds that the exposure to the common

factor on that day was elevated for Czech Republic, Greece, Hungary, Poland, as well as

the United Kingdom. Federle et al. (2024) discuss potential reasons for this ‘proximity

penalty’, notably trade linkages as well as disaster risk, i.e. the risk of getting involved in

the conflict. The last notable occurrence of widened factor exposure to common shocks

relates to the tariff announcements by the U.S. government in early-April 2025, affecting

several European countries particularly strongly.

We conclude this section with a few more general remarks. First, several well-known

stock market crashes from the recent past do not go along with suddenly increasing com-

mon factor exposures. Those events have clearly constituted common return shocks but

seem to have transmitted through ‘normal’ market linkages. These include, for example,

the U.S. stock market’s ‘flash crash’ on 06/05/2010, in which case the overall limited

evidence of contagion is in line with previous findings in the literature (Jansen, 2021).18

Other such cases are the 2015–16 global stock market sell-off as well as ‘Black Monday’ on

18However, more generally, identifying contagion originating from extremely short-lived events, where
a market drops sharply and subsequently recovers within a single day, would require data of higher
frequency than the daily one used in our analysis (see, for example, Bongaerts et al., 2022).
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08/08/2011 caused by a downgrading of the U.S. sovereign credit rating. As previously

mentioned, Table 5 illustrates selected dates and these depend on the chosen probability

threshold. Additional event dates would show up when lowering this threshold. Finally,

we cannot rule out that the model occasionally identifies idiosyncratic shocks as regime

changes in the factor exposures. A possible solution could be to extend the model to also

allow for regime switches in the volatility of idiosyncratic shocks to avoid that such events

are captured by the regime-switching component of the loadings. This illustrates a point

relevant for most reduced-form approaches, which is to not take the model output simply

at face value but to combine it with information outside the model to build a narrative.

3.5 Out-of-sample forecasting of downside risk

Having discussed the main empirical results, this section provides additional statistical

support for our proposed specification through a relatively simple out-of-sample forecast-

ing exercise. Since forecasting is not the main objective of our analysis, here we are only

interested in answering two selected questions. First, does adding a Markov-switching

component to the factor loadings improve the out-of-sample performance and, second,

can our model compete with a frequently used time-varying volatility (GARCH) model?

We forecast two commonly used measures of downside risk in financial markets, i.e.

Value-at-Risk (VaR) and expected shortfall (ES). VaR refers to the p%-quantile of the

predictive excess return distribution, while ES is the expected excess return below the

VaR level.19 Our forecast comparison includes four models, which in order of increasing

complexity are

1. The ‘naive’ historical benchmark, where VaR and ES forecasts are computed as

their unconditional counterparts over the in-sample period.

2. A GARCH(1,1) model where the standardised errors follow a t-distribution (Boller-

slev, 1986, 1987).

19The formal definitions are

Pr(yi,t+h ≤ V aRp
i,t+h|t) = p, and

ESp
i,t+h|t = E(yi,t+h|yi,t+h ≤ V aRp

i,t+h|t).
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3. A simplified version of the previously introduced factor model which does not allow

for Markov-switching regimes in the factor loadings, i.e. γit = 0 ∀ i = 1, ..., N

and t = 1, ..., T . This model thus assumes that the time-varying loadings follow a

random walk process and is labeled ‘Factor (rw)’.

4. The factor model with composite loadings outlined in Section 2.1. This model is

labeled ‘Factor (full)’.

For each of these models, we generate a series of one-day-ahead (h = 1) VaR and ES

forecasts for p ∈ {1%, 5%}. We initially estimate the models with data until 31/12/2009

before recursively, and using an extending window scheme, generating out-of-sample fore-

casts for the period 01/01/2010–30/04/2025 (Toos = 3, 962).

While the one-step-ahead VaR/ES forecasts of the GARCH model can be obtained

analytically, for the factor specifications we embed this in the MCMC algorithm. Specif-

ically, for each Gibbs draw of the model parameters, we generate a corresponding draw

from the one-step-ahead predictive distribution of yi,t+1. The latter requires generating

draws for κt+1, ϵi,t+1, ηi,t+1, ψi,t+1, ωi,t+1 and Si,t+1|Sit. These can be used to calculate

the set of the one-step-ahead unobserved states based on Equations (2)-(8), i.e. gt+1, ft+1,

hi,t+1, εi,t+1, β̃i,t+1, γi,t+1, and βi,t+1. Lastly, yi,t+1 is obtained based on Equation (1). The

forecasts for VaR/ES are then computed based on all draws of yi,t+1.
20 To evaluate the

VaR forecasts, we report the average tick loss or quantile score across countries (see, e.g.,

Koenker and Bassett, 1978; Brownlees and Souza, 2021), while in case of ES forecasts we

report the VaR-ES score (see, e.g., Fissler et al., 2015; Carriero et al., 2024). In addition,

and similarly to Brownlees and Souza (2021), we also report the results of pairwise model

forecast comparisons using Diebold and Mariano (1995) tests.21

20For computational reasons, in this section we reduce the number of MCMC draws to 220,000, where
we drop the first 20,000 draws as ‘burn-in’ and do not apply ‘thinning’. The results here are thus based
on 200,000 effective MCMC draws.

21The two factor specifications are nested, potentially rendering the test invalid (see, e.g., Clark and
McCracken, 2001). However, alternative approaches are more complex and less frequently used even
in the nested case.
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Table 6: Results of out-of-sample forecasting exercise

Model

Hist. GARCH-t Factor (rw) Factor (full)

TL

1%

Avg. loss 0.062 0.053 0.053 0.052

Hist. – 19 (19) 19 (19) 19 (19)

GARCH-t 0 (0) – 1 (1) 1 (1)

Factor (rw) 0 (0) 1 (1) – 5 (8)

Factor (full) 0 (0) 0 (1) 0 (0) –

5%

Avg. loss 0.188 0.172 0.170 0.170

Hist. – 18 (19) 19 (19) 19 (19)

GARCH-t 0 (0) – 3 (6) 5 (8)

Factor (rw) 0 (0) 0 (0) – 0 (3)

Factor (full) 0 (0) 0 (0) 0 (1) –

VaR-ES

1%

Avg. loss 0.752 0.730 0.738 0.735

Hist. – 17 (19) 5 (8) 8 (12)

GARCH-t 0 (0) – 0 (1) 1 (2)

Factor (rw) 0 (0) 1 (8) – 8 (13)

Factor (full) 0 (0) 1 (3) 0 (0) –

5%

Avg. loss 0.856 0.814 0.813 0.812

Hist. – 19 (19) 19 (19) 19 (19)

GARCH-t 0 (0) – 2 (4) 3 (5)

Factor (rw) 0 (0) 0 (0) – 4 (7)

Factor (full) 0 (0) 0 (0) 0 (0) –

Notes: This table shows the average loss metrics (TL and VaR-ES) across countries. It also

contains the results of Diebold and Mariano (1995) tests (using White (1980) HC standard

errors). Specifically, we report the number among the 19 countries for which the model in the

column produces more precise Value-at-Risk and expected shortfall forecasts than the model in

the respective row at the 5% (10%) significance level (one-sided test).

Table 6 summarises the results of this stylised forecasting exercise. First, our proposed

factor specification with composite loadings – with the exception of 1%-ES – is always

the model, or among the models, producing the lowest average loss measure. Second,

in almost all cases it significantly outperforms the other three approaches for at least

as many countries than vice versa, and in most cases for many more. Third, while the

benefits of our proposed model compared to the GARCH-t model seem to be strongest

for both risk measures at the 5% level, compared to the nested factor specification they

are more pronounced at the 1% level. The latter indicates that the regime-switching

component of the factor loadings especially helps to improve forecasts of the extreme left
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tail of the predictive return distribution.

In summary, the results in this section provide statistical support for our empirical

specification, highlighting the value added of a regime-switching component in the factor

loadings compared to a nested specification with only smoother time variation. The

model also generates competitive out-of-sample forecasts of downside risk compared to a

widely used time-varying volatility model.

3.6 Robustness checks

Prior sensitivity

As discussed in Section 2.2, our prior configurations are already relatively loose and the

presented results are overall not sensitive to changes in these prior values. However, we

set a somewhat tighter prior on the conditional probability to remain in the ‘normal

regime’. Table C-2 in Appendix C contains the estimated transition probabilities and the

factor loading shifts in the high factor exposure regime for alternative prior configurations

of q and p (see Appendix C for further details and discussion). When relaxing the prior

distribution of the conditional probability Pr(St = 0|St−1 = 0) = q, the posterior means

of this parameter drop moderately for most countries, resulting in a larger number of

days in the high exposure regime. When relaxing the prior distribution of the conditional

probability to remain in the ‘contagion regime’, Pr(St = 1|St−1 = 1) = p, most posterior

means of this parameter drop while the total number of days with elevated factor exposure

remains similar to the baseline for most countries (with the exception of Switzerland,

further discussed in Appendix C). Overall, these sensitivity checks are partially in line

with Bianchi et al. (2017) who, using a somewhat different modeling approach, report

that the prior distributions of both probabilities matter but find that the impact of the

latter on posterior outcomes is much stronger.

Infrequent jumps in the mean equation

This robustness check addresses potential concerns that the regime switches in countries’

factor exposure to the common European factor, which we have been interpreting as

indicative of contagious transmission of common return shocks, are simply capturing
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jumps in the mean equation. While one could argue that fat-tailed shocks are sufficient

to capture occasional extreme returns, here we explicitly include a jump component in

the mean equation following Chib et al. (2006), i.e. we augment Equation (1) as follows

yit = βitft + kitζit + εit, i = 1, ..., N, t = 1, ..., T, (11)

where ζit ∈ [0, 1] is a binary variable that takes the value one with probability wi and kit

are the jump sizes modeled as kit ∼ N (µk,i, σ
2
k,i). In choosing the priors for these addi-

tional parameters, we follow Chan and Grant (2016). Specifically, the jump intensity wi is

assumed to follow a uniform distribution, i.e. wi ∼ U(0, 0.1). The average jump size and

the log-jump variance δi = (µk,i, log(σ2
κ,i)) are assumed to be distributed as δi ∼ N (δ0, Vδ).

The prior hyperparameters are set to δ0 = (0, log(10))′ and Vδ = diag(10, 1). When es-

timating this extended version of our baseline model, the results remain essentially un-

changed. We find the jump component in Equation (11) to be only of minor importance.

In particular, the previously documented regime changes in the factor exposures to the

common European factor (see Table 4) are largely unaffected by allowing for jumps in

the excess return equation (see Table C-3 in Appendix C).

4 Concluding remarks

This paper has analysed financial market interdependence and contagion for 19 European

equity markets over the period 02/01/1995—30/04/2025, using an unobserved common

factor model. We model the factor loadings as the sum of a persistent component, mea-

suring both slowly evolving structural dynamics and cyclical variation in markets’ inter-

dependence, and a regime-switching component, capturing sudden increases in countries’

exposure to the common European factor. The latter is often indicative of contagious

shock transmission. We estimate the model using MCMC methods combined with fast

sparse matrix algorithms.

Our results can be summarised as follows. First, the proposed one-factor specifica-

tion captures most of the cross-market correlation in our dataset of daily excess returns

across European stock markets. Second, before 2011/12, the average pairwise correlation

coefficient of European stock markets has been trending up. However, after the GFC,
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we find some evidence of lower interdependence. Third, we document occasional and

sudden increases in the factor exposure of various countries to the common factor dur-

ing different periods. Many of these can be associated with well-known market events,

often constituting evidence of contagion. Lastly, we provide statistical support for our

factor specification through an out-of-sample forecasting exercise of downside risk in eq-

uity markets. We show that i) composite factor loadings can improve forecasts compared

to having only a slow-moving source of time-varying factor exposure and ii) our model

competes well with a standard time-varying volatility (GARCH) model.

These insights could help both policy makers and market participants. Countries that

are more exposed to common shocks than what would be expected by ‘normal’ market

linkages may be concerned about the resilience of their financial markets during future

periods of turmoil. While certain policy measures may be effective if the reason for a

country’s vulnerability is domestic, it is more difficult to shield against the adverse impact

of unpredictable economic and political instability abroad. Market participants could

use the model to monitor and forecast excessive factor exposure, potentially providing

valuable input for portfolio allocation decisions.
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Appendix A Details on the MCMC algorithm

In this appendix, details are given on the blocking scheme of the MCMC algorithm

and the conditional posterior distributions of the factor stochastic volatility model with

time-varying and composite factor loadings introduced in Section 2. Before describing

the various blocks of the Gibbs sampling algorithm in detail, a few remarks regarding

different aspects of the estimation approach are made:

1. While the time-varying unobserved states of the linear Gaussian state space models

in Blocks 1(a), 2 and 3 could in principle be filtered using the standard Kalman

filter and subsequently be sampled using the algorithm outlined in Carter and Kohn

(1994), this procedure turns out to be very slow when estimating the model using

daily data with T ∼ 8, 000 for N = 19 countries. Instead, we use more efficient

algorithms based on sparse matrix techniques that have been proposed by Chan and

Jeliazkov (2009) and McCausland et al. (2011). The reader is referred to pp. 5-8 in

Chan and Hsiao (2014) for a detailed outline of the so-called precision sampler.

2. In order to transform the model with Student-t distributed (common and country-

specific) shocks into a conditionally Gaussian framework, we make use of the fact

that the Student-t distribution can be expressed as a scale mixture of normal distri-

butions. Specifically, Geweke (1993) and Chan and Hsiao (2014) show how to use

this insight to set up efficient Gibbs sampling algorithms for simple linear models

and stochastic volatility models, respectively. To illustrate the basic idea, consider

the following model

yt = εt, εt ∼ t(ν), (A-1)

which can equivalently be written as

yt = λ
1/2
t ϵt, λt|ν ∼ IG(ν/2, ν/2), ϵt ∼ N (0, 1). (A-2)

Therefore, conditional on the scale mixture weights λ, the model is Gaussian. We

will use this insight in the following when developing a Gibbs sampler for the factor

model with time-varying and composite loadings.
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3. The country-specific return components, or equivalently, the country-specific error

terms of our factor model, are assumed to exhibit AR(1) dynamics. To deal with

this fact in our Gibbs sampling algorithm (where the state space representations

assume uncorrelated errors), we apply a simple (Cochrane-Orcutt) transformation

of the model which re-establishes the assumption of serially uncorrelated error terms

(see, e.g., Zellner and Tiao, 1964).

Block 1: Sample the composite factor loadings β

Block 1(a): Sample the random walk component β̃

For the purpose of sampling the latent random walk factor loading series β̃, we first specify

a general state space model of the following form as given in Durbin and Koopman (2012)

wt = Ztκt + et, et ∼ N (0, Ht), (A-3)

κt+1 = dt + Ttκt +Rtηt, ηt ∼ N (0, Qt), (A-4)

where wt is a vector of observed data and κt the unobserved state. The matrices Zt, Tt,

Ht, Qt, Rt, and dt are assumed to be known (conditioned upon). The error terms et and

ηt are assumed to be serially uncorrelated and independent of each other at all points in

time. The specific linear state space model used in this block to sample the time-varying

states β̃ takes the following form

(ỹt − Stγ1ft)︸ ︷︷ ︸
wt

=
[
INft

]
︸ ︷︷ ︸

Zt

[
β̃t

]
︸︷︷︸
κt

+ ϵt︸︷︷︸
et

, (A-5)

[
β̃t+1

]
︸ ︷︷ ︸
κt+1

=
[
IN

]
︸︷︷︸
Tt

[
β̃t

]
︸︷︷︸
κt

+
[
IN

]
︸︷︷︸
Rt

[
ωt

]
︸︷︷︸
ηt

, (A-6)

with ỹt = yt − θεt−1 being the (Cochrane-Orcutt) transformed dependent variable (the

same notation is maintained in the following blocks), Ht = IN(eht ⊙ λϵ,t), Qt = diag(σ2
ω)

and where ⊙ is the element-wise (Hadamard) product of two vectors. Since β̃ is country-

specific, sampling is implemented country-by-country.
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Block 1(b): Sample the regime-switching component γ

In this block we sample the regime-switching components of the factor loadings, i.e. its

constituent components which are the regime indicators S, the transition probabilities q

and p, and the loading shifts γ1. The sampling approach closely follows Albert and Chib

(1993) and Kim and Nelson (1999). Since all these components are country-specific, they

are sampled country-by-country.

Sample the regime indicators S

To sample the regime indicators S, we apply the multi-move sampler outlined in Kim

and Nelson (1999) which samples St for t = 1, ..., T as a block from the corresponding

joint conditional posterior distribution. Specifically, for each i = 1, ..., N , we sample Si

from

P (Si|ỹi, f, β̃i, hi, λε,i, γ1,i, qi, pi). (A-7)

The filtered probabilities Pr(Sit = sit, Si,t−1 = si,t−1, ..., Si,t−r+1 = si,t−r+1|ỹit, ỹi,t−1, ..., ỹi,−r+1)

, which are required for the multi-move sampler, are in a first step obtained through the

basic filter of Hamilton (1989).

Sample the transition probabilities q and p

Conditional on the regime indicators Si, the transition probabilities qi and pi follow

posterior beta distributions

qi|Si ∼ beta(u00 + ni00, u01 + ni01), (A-8)

pi|Si ∼ beta(u11 + ni11, u10 + ni10), (A-9)

where u00, u01, u11 and u10 are the prior parameters specified in Table 1 and ni00, n
i
01, n

i
11

and ni10 are (given the regime indicators Si) the number of transitions nikj from regime k

to j for k = [0, 1] and j = [0, 1].
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Sample the loading shifts γ1

The conditional posterior distributions of γ1 are truncated normal. Following Albert and

Chib (1993), the conditional distribution of each γ1,i is

γ1,i|ỹi, f, β̃i, Si, hi, λε,i ∼ N (γ̂1,i, Dγ1,i)I(γ1,i > 0), (A-10)

with

Dγ1,i = (V −1
γ1,i

+X ′
γ1,i

Σ−1
γ1,i
Xγ1,i)

−1, (A-11)

γ̂1,i = Dγ1,i(V
−1
γ1,i
γ10,i +X ′

γ1,i
Σ−1
γ1,i
zγ1,i), (A-12)

where Xγ1,i = Si ⊙ f , zγ1,i = ỹi − β̃i ⊙ f and Σγ1,i = diag(ehi ⊙ λε,i).

Block 2: Sample the common factor f

In order to sample the common factor f , we explore the following state space model

ỹt︸︷︷︸
wt

=
[
βt

]
︸︷︷︸
Zt

ft︸︷︷︸
κt

+ ϵt︸︷︷︸
et

, (A-13)

ft+1︸︷︷︸
κt+1

=
[
ρ
]

︸︷︷︸
Tt

ft︸︷︷︸
κt

+
[
1
]

︸︷︷︸
Rt

κt︸︷︷︸
ηt

, (A-14)

where Ht = IN(eht ⊙ λϵ,t) and Qt = egtλκ,t.

Block 3: Sample the stochastic volatility series g and h

In order to sample the stochastic volatility series that enter the model in a nonlinear way,

we rely on the approach developed in Kim et al. (1998). To illustrate the idea, consider

the following simple stochastic volatility model:

yt = eht/2εt, εt ∼ N (0, 1). (A-15)
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Following Kim et al. (1998) this expression can be linearised by taking the natural-log of

the squares

ln
(
y2t + c

)
= ht + ε̃t, (A-16)

where c = 0.116 is an offset constant and ε̃t = ln(ε2t ). The latter follows a log-chi-square

distribution that can be approximated by a mixture of M normal distributions as follows

f(ε̃t) =
M∑
j=1

qjfN (ε̃t|mj − 1.2704, v2j ), (A-17)

where qj is the component probability of a specific normal distribution with mean mj −

1.2704 and variance v2j . This mixture can equivalently by expressed as

ε̃t|(ιt = j) ∼ N (mj − 1.2704, v2j ), with Pr(ιt = j) = qj. (A-18)

Here, ιt is a mixture indicator that can be sampled from

p(ιt = j|ht, ε̃t) ∝ qjfN (ε̃t|ht +mj − 1.2704, v2j ), (A-19)

with the values for qj, mj, and v2j for M = 10 taken from Table 1 in Omori et al. (2007).

Block 3(a): Sample the stochastic volatility of common shocks g

Sample the mixture indicator ξ

Based on the previously outlined procedure, the mixture indicator ξ required for sampling

the stochastic volatility g of common shocks follows a ten-point distribution. In particular,

each ξt has probability

p(ξt = j|ft, gt, λκ,t, ρ) =
1

kt
qjpN

(
f̃t; gt +mj, v

2
j

)
, (A-20)

where f̃t = ln
(
[(ft − ρft−1)/λ

0.5
κ,t ]

2 + c
)

and kt =
∑10

j=1 qjpN

(
f̃t; gt +mj, v

2
j

)
is a normal-

ising constant. Practical implementation of the indicator sampling is done by using the
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inverse-transform method as in Chan and Hsiao (2014).22

Sample the volatility series g

The unobserved volatility process g of common shocks can now be sampled from the

following state space model

f̃t − (mξt − 1.2704)︸ ︷︷ ︸
wt

=
[
1
]

︸︷︷︸
Zt

[
gt

]
︸︷︷︸
κt

+ κ̃′t︸︷︷︸
et

, (A-21)

gt+1︸︷︷︸
κt+1

=
[
1
]

︸︷︷︸
Tt

[
gt

]
︸︷︷︸
κt

+
[
1
]

︸︷︷︸
Rt

[
ηt

]
︸︷︷︸
ηt

, (A-22)

with f̃ as defined above, κ̃′t = ln(κ
′2
t ), κ′t = κt/λ

0.5
κ,t , Ht = v2ξt and Qt = σ2

η.

Block 3(b): Sample the volatility of country-specific shocks h

Sample the mixture indicator ι

As before, the mixture indicator ι required for sampling the stochastic volatilities h

of country-specific shocks follows a ten-point distribution. In particular, each ιit has

probability

p(ιit = j|ỹit, hit, ft, βit, λϵ,it) =
1

kt
qjpN

(˜̃yit;hit +mj, v
2
j

)
, (A-23)

where ˜̃yit = ln
(
[(ỹit − βitft)/λ

0.5
ε,it]

2 + c
)

and kt =
∑10

j=1 qjpN

(˜̃yit;hit +mj, v
2
j

)
is a nor-

malising constant. Sampling is again done by using the inverse-transform method.

22See Algorithm 3.2. in Kroese et al. (2013) for a textbook treatment of the inverse-transform method.

43



Sample the volatility series h

To sample the country-specific stochastic volatility series, the specific state space model

used is

˜̃yt −mιt︸ ︷︷ ︸
wt

=
[
1
]

︸︷︷︸
Zt

ht︸︷︷︸
κt

+ ϵ̃′t︸︷︷︸
et

, (A-24)

ht+1︸︷︷︸
κt+1

=
[
µh ⊙ (1 − ϕh)

]
︸ ︷︷ ︸

dt

+
[
INϕh

]
︸ ︷︷ ︸

Tt

ht︸︷︷︸
κt

+
[
1
]

︸︷︷︸
Rt

κt︸︷︷︸
ηt

, (A-25)

where ˜̃y is as defined above, ϵ̃′t = ln(ϵ
′2
t ), ϵ′t = ϵt ⊘ λ0.5ϵ,t , Ht = v2ιt and Qt = σ2

ψ. ⊘ refers

to the element-wise (Hadamard) division of two vectors. Since h is country-specific,

sampling is implemented country-by-country.

Block 4: Sample the degrees of freedom parameters

Block 4(a): Sample the degrees of freedom of common shocks νκ

Sample the latent scale mixture weights λκ

Following, e.g. Chan and Hsiao (2014), the conditional posterior distribution of the scale

mixture weights λκ is inverse-gamma. Specifically, each λκ,t is distributed as

(λκ,t|ft, gt, ρ, νκ) ∼ IG
(
νκ + 1

2
,
νκ + e−gt(ft − ρft−1)

2

2

)
. (A-26)

Sample the degrees of freedom νκ

The description of the sampling approach closely follows Chan and Hsiao (2014). The

log-density log p(νκ|λκ) can be derived using the fact that λκ,t ∼ IG(νκ/2, νκ/2) and the

prior distribution νκ ∼ U(0, ν̄) as

log p(νκ|λκ) =
Tνκ

2
log(νκ/2) − T log Γ(νκ/2) − (νκ/2 + 1)

T∑
t=1

log λκ,t −
νκ
2

T∑
t=1

λ−1
t + k,

(A-27)
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for 0 < νκ < ν̄ and k is a normalisation constant. The first and second derivative of the

log-density with respect to νκ are then given by

d log p(νκ|λκ)
dνκ

=
T

2
log(νκ/2) +

T

2
− T

2
Ψ(νκ/2) − 1

2

T∑
t=1

log λκ,t −
1

2

T∑
t=1

λ−1
κ,t , (A-28)

d2 log p(νκ|λκ)
dν2κ

=
T

2νκ
− T

4
Ψ′(νκ/2), (A-29)

where Ψ(x) = d
dx

log Γ(x) and Ψ′(x) = d
dx

Ψ(x) are the digamma and trigamma function,

respectively. Since the first and second derivatives can be evaluated easily, log p(νκ|λκ)

can be maximised by well-known algorithms (e.g. the Newton-Raphson method). In addi-

tion, the mode and the negative Hessian evaluated at the mode, denoted ν̂κ and Kνκ , are

obtained. Finally, an independence-chain Metropolis-Hastings step can be implemented

with proposal distribution N (ν̂κ, K
−1
νκ ).

Block 4(b): Sample the degrees of freedom of country-specific shocks νϵ

Sample the latent scale mixture weights λϵ

Following, e.g. Chan and Hsiao (2014), the conditional posterior distributions of the scale

mixture weights λϵ are inverse-gamma. Specifically, each λϵ,i,t is distributed as

(λϵ,i,t|ỹit, hit, βit, ft) ∼ IG
(
νϵ,i + 1

2
,
νϵ,i + e−hit(ỹit − βitft)

2

2

)
(A-30)

Sample the degrees of freedom νϵ

Sampling of the degrees of freedom of country-specific shocks νϵ is done in the same way

as for the degrees of freedom of common shocks, νκ. The derivations outlined above can

be used and replacing νκ and λκ by νϵ,i and λϵ,i while looping over i = 1, ..., N .
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Block 5: Sample the constant stochastic volatility parameters

Block 5(a): Sample the volatility AR(1) coefficients ϕg and ϕh

Following Kim et al. (1998) and using the notation of Chan and Hsiao (2014), the

conditional posterior distribution of the persistence parameter ϕτ , where τ = (g, hi),

i = 1, ..., N , is

p(ϕτ |τ, µτ , σ2
τ ) ∝ p(ϕτ )g(ϕτ )exp

(
− 1

2σ2
τ

T∑
t=2

(τt − µτ − ϕτ (τt−1 − µτ ))
2

)
, (A-31)

with

g(ϕτ ) = (1 − ϕ2
τ )

1/2exp

(
− 1

2σ2
τ

(1 − ϕ2
τ )(τ1 − µτ )

2

)
, (A-32)

and p(ϕτ ) is the truncated normal prior defined in Table 1. Due to the stationarity

condition |ϕτ | < 1, this distribution is non-standard and sampling is achieved using the

Metropolis-Hastings algorithm. In particular, the proposal density is N (ϕ̂τ , Dϕτ )I(|ϕτ | <

1) with

Dϕτ = (V −1
ϕτ

+X ′
ϕτXϕτ/σ

2
τ )

−1, (A-33)

ϕ̂τ = Dϕτ (V −1
ϕτ
ϕτ0 +X ′

ϕτ zϕτ/σ
2
τ ), (A-34)

where Xϕτ = (τ1 − µτ , ..., τT−1 − µτ )
′ and zϕτ = (τ2 − µτ , ..., τT − µτ )

′ (Chan and Hsiao,

2014). Conditional on the current state ϕτ , a proposal ϕ∗
τ is accepted with probability

min(1, g(ϕ∗
τ )/g(ϕτ )). In case of rejection, the Markov chain remains at the current state

ϕτ .

Block 5(b): Sample the volatility constants µg and µh

The conditional posterior distributions of the volatility constants are standard and sam-

ples can be readily obtained. Following Kim et al. (1998) and the notation of Chan and

Hsiao (2014), the conditional distribution of µτ , where τ = (g, hi), i = 1, ..., N , is

µτ |τ, ϕτ , σ2
τ ∼ N (µ̂τ , Dµτ ), (A-35)

46



with

Dµτ = (V −1
µτ +X ′

µτ Σ−1
τ Xµτ )−1, (A-36)

µ̂τ = Dµτ (V −1
µτ µτ0 +X ′

µτ Σ−1
τ zµτ ), (A-37)

where Xµτ = (1, 1 − ϕτ , ..., 1 − ϕτ )
′, zµτ = (τ1, τ2 − ϕττ1, ..., τT − ϕττT−1)

′ and Στ =

diag(σ2
τ/(1 − ϕ2

τ ), σ
2
τ , ..., σ

2
τ ).

Block 5(c): Sample the shock variances σ2
η and σ2

ψ

The shock variances of the (log-)volatilities gt and ht have inverse-gamma conditional pos-

terior distributions (Kim et al., 1998). Specifically, the conditional posterior distribution

of σ2
τ , where τ = (g, hi), i = 1, ..., N , is

σ2
τ |τ, µτ , ϕτ ∼ IG(cτ0 + T/2, Cτ ), (A-38)

where notation follows Chan and Hsiao (2014) and

Cτ = Cτ0 +

[
(1 − ϕ2

τ )(τ1 − µτ )
2 +

T∑
t=2

(τt − µτ − ϕτ (τt−1 − µτ ))
2

]
/2. (A-39)

Block 6: Sample the shock variances of the random walk loading

component σ2ω

The shock variances of the random walk factor loading component β̃ has an inverse-

gamma conditional posterior distribution (Kim et al., 1998). Specifically, the conditional

posterior distribution of each σ2
ω,i, i = 1, ..., N , is

σ2
ω,i|β̃i ∼ IG(cβ̃i0 + T/2, Cβ̃i), (A-40)

where notation follows Chan and Hsiao (2014) and

Cβ̃i = Cβ̃i0 +

[
T∑
t=2

(β̃it − β̃i,t−1)
2

]
/2. (A-41)
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Block 7: Sample the persistence parameters of the return factors

Block 7(a): Sample the AR(1) parameter of the common factor ρ

Using the notation of Chan and Hsiao (2014), the conditional posterior distribution of

the persistence parameter of the common factor, ρ, is

p(ρ|f, g, λκ) ∝ p(ρ)g(ρ)exp

(
T∑
t=2

[(ft − ρft−1)e
−gt/2λ−0.5

κ,t ]2

)
, (A-42)

with g(ρ) = (1 − ρ2)1/2exp
(
(1 − ρ2)(f1e

g1/2λ0.5κ,1)
2
)
, (A-43)

and p(ρ) is the truncated normal prior defined in Table 1. Due to the stationarity

condition |ρ| < 1, this distribution is non-standard and sampling is achieved using the

Metropolis-Hastings algorithm. In particular, the proposal density is N (ρ̂, Dρ)I(|ρ| < 1)

with

Dρ = (V −1
ρ +X ′

ρXρ)
−1, (A-44)

ρ̂ = Dρ(V
−1
ρ ρ0 +X ′

ρzρ), (A-45)

whereXρ = (f1e
−g1/2λ−0.5

κ,1 , ..., fT−1e
−gT−1/2λ−0.5

κ,T−1)
′ and zρ = (f2e

−g2/2λ−0.5
κ,2 , ..., fT e

−gT /2λ−0.5
κ,T )′.

Conditional on the current state ρ, a proposal ρ∗ is accepted with probability min(1, g(ρ∗)/g(ρ)).

In case of rejection, the Markov chain remains at the current state ρ.

Block 7(b): Sample the AR(1) parameters of country-specific return factors

θ

Using the notation of Chan and Hsiao (2014), the conditional posterior distributions of

the persistence parameters of the country-specific return components, θi for i = 1, ...N ,

is

p(θi|yi, βi, f, λϵ,i) ∝ p(θi)g(θi)exp

(
T∑
t=2

[(εit − θiεi,t−1)e
−hit/2λ−0.5

ϵ,i,t ]2

)
, (A-46)

with g(θi) = (1 − θ2i )
1/2exp

(
(1 − θ2i )(ϵi1e

hi1/2λ0.5ϵ,i,1)
2
)
, (A-47)
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and where ε = y − βf and p(θi) is the truncated normal prior defined in Table 1. Due

to the stationarity condition |θi| < 1, this distribution is non-standard and sampling is

achieved using the Metropolis-Hastings algorithm. In particular, the proposal density is

N (θ̂i, Dθi)I(|θi| < 1) with

Dθi = (V −1
θi

+X ′
θi
Xθi)

−1, (A-48)

θ̂i = Dθi(V
−1
θi
θ0,i +X ′

θzθi), (A-49)

where Xθi = (ε1e
−hi1/2λ−0.5

ϵ,i,1 , ..., εi,T−1e
−hi,T−1/2λ−0.5

ϵ,i,T−1)
′ and

zθi = (εi2e
−hi2/2λ−0.5

ϵ,i,2 , ..., εT e
−hi,T/2λ−0.5

ϵ,i,T )′. Conditional on the current state θi, a proposal

θ∗i is accepted with probability min(1, g(θ∗i )/g(θi)). In case of rejection, the Markov chain

remains at the current state θi.

Appendix B Dataset
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Figure B-1: Time series plots of MSCI equity price indices (in USD)
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Figure B-2: Time series plots of excess returns (in %)



Table B-1: Summary statistics of excess returns

Country Mean S.D. Min. Max. Skew. Kurt. Jarque-Bera

Austria 0.00 1.65 −16.65 13.35 −0.44 11.98 0.00

Belgium 0.00 1.38 −18.22 10.66 −0.65 13.99 0.00

Czech Republic 0.01 1.60 −16.75 19.72 −0.36 13.92 0.00

Denmark 0.03 1.37 −14.21 10.71 −0.41 10.21 0.00

Finland 0.01 1.92 −20.08 15.90 −0.38 10.75 0.00

France 0.01 1.44 −14.90 11.84 −0.23 10.52 0.00

Germany 0.01 1.49 −15.10 11.59 −0.23 9.28 0.00

Greece −0.03 2.20 −25.06 17.17 −0.49 12.37 0.00

Hungary 0.02 2.09 −20.35 20.31 −0.42 13.01 0.00

Ireland 0.00 1.62 −18.93 13.60 −0.68 12.99 0.00

Italy 0.00 1.59 −20.55 12.47 −0.53 12.40 0.00

Netherlands 0.01 1.43 −12.09 10.53 −0.22 9.09 0.00

Norway 0.01 1.70 −14.23 15.39 −0.52 10.75 0.00

Poland 0.00 1.94 −17.65 14.23 −0.30 8.11 0.00

Portugal −0.01 1.37 −13.83 11.82 −0.33 10.01 0.00

Spain 0.01 1.56 −17.22 16.00 −0.30 12.06 0.00

Sweden 0.02 1.72 −14.81 14.05 −0.10 8.38 0.00

Switzerland 0.02 1.13 −11.33 9.73 −0.20 9.18 0.00

United Kingdom 0.00 1.27 −14.21 12.16 −0.42 14.08 0.00

Notes: This table contains summary statistics of daily excess equity returns for 19 European stock

markets over the period 02/01/1995–30/04/2025. The last column contains p-values of the Jarque-

Bera test where the null hypothesis is normality.

52



Appendix C Additional results

Table C-1: Posterior estimates of country-specific parameters

Country µh ϕh σ2
ψ θ νϵ γ1 q p σ2

ω

Austria -0.663 0.983 0.014 -0.012 9.295 0.603 0.902 0.402 0.00061

(0.088) (0.004) (0.003) (0.013) (1.177) (0.099) (0.056) (0.084) (0.00011)

Belgium -1.557 0.992 0.009 0.022 5.352 0.236 0.797 0.507 0.00050

(0.153) (0.002) (0.002) (0.014) (0.358) (0.042) (0.095) (0.092) (0.00008)

Czech Republic -0.121 0.979 0.022 0.052 9.387 0.713 0.913 0.483 0.00078

(0.087) (0.005) (0.005) (0.013) (1.222) (0.153) (0.069) (0.098) (0.00016)

Denmark -0.757 0.990 0.009 -0.033 7.119 0.416 0.746 0.486 0.00053

(0.115) (0.003) (0.002) (0.013) (0.625) (0.066) (0.116) (0.092) (0.00010)

Finland -0.742 0.998 0.006 -0.012 4.656 0.273 0.879 0.489 0.00049

(0.424) (0.001) (0.001) (0.013) (0.257) (0.364) (0.121) (0.101) (0.00008)

France -2.466 0.997 0.006 -0.028 8.429 0.148 0.650 0.442 0.00031

(0.360) (0.001) (0.001) (0.015) (1.215) (0.044) (0.118) (0.088) (0.00004)

Germany -2.051 0.992 0.016 -0.044 10.102 0.254 0.794 0.370 0.00045

(0.192) (0.002) (0.003) (0.014) (1.799) (0.038) (0.089) (0.080) (0.00007)

Greece 0.481 0.988 0.022 0.046 12.526 0.711 0.723 0.475 0.00072

(0.150) (0.003) (0.004) (0.013) (2.341) (0.062) (0.071) (0.079) (0.00016)

Hungary 0.304 0.970 0.027 0.057 10.791 0.887 0.875 0.560 0.00081

(0.076) (0.007) (0.007) (0.013) (2.290) (0.276) (0.063) (0.080) (0.00018)

Ireland -0.635 0.992 0.008 0.000 7.685 0.517 0.912 0.541 0.00058

(0.147) (0.002) (0.002) (0.013) (0.736) (0.114) (0.059) (0.083) (0.00011)

Italy -1.327 0.990 0.016 -0.030 8.991 0.287 0.859 0.424 0.00048

(0.159) (0.002) (0.003) (0.013) (1.180) (0.108) (0.122) (0.099) (0.00008)

Netherlands -1.913 0.994 0.010 0.000 7.539 0.173 0.613 0.478 0.00046

(0.201) (0.002) (0.002) (0.014) (0.832) (0.044) (0.154) (0.096) (0.00007)

Norway -0.453 0.989 0.009 -0.033 10.293 0.576 0.740 0.544 0.00067

(0.114) (0.003) (0.002) (0.013) (1.442) (0.045) (0.068) (0.069) (0.00013)

Poland 0.272 0.989 0.011 0.021 12.734 0.958 0.911 0.442 0.00072

(0.118) (0.003) (0.002) (0.013) (2.230) (0.243) (0.132) (0.093) (0.00015)

Portugal -0.745 0.984 0.012 0.073 9.330 0.390 0.750 0.541 0.00067

(0.090) (0.004) (0.003) (0.013) (1.169) (0.039) (0.078) (0.085) (0.00012)

Spain -1.305 0.986 0.017 0.034 9.584 0.518 0.956 0.463 0.00048

(0.119) (0.003) (0.004) (0.014) (1.396) (0.111) (0.031) (0.095) (0.00008)

Sweden -0.881 0.993 0.008 -0.054 9.526 1.137 0.979 0.463 0.00082

(0.174) (0.002) (0.002) (0.013) (1.109) (0.269) (0.073) (0.089) (0.00015)

Switzerland -1.515 0.985 0.011 -0.012 11.554 0.215 0.763 0.549 0.00053

(0.092) (0.003) (0.003) (0.013) (1.964) (0.054) (0.135) (0.104) (0.00009)

United Kingdom -1.554 0.993 0.006 -0.056 14.800 0.374 0.899 0.572 0.00053

(0.137) (0.002) (0.001) (0.013) (3.254) (0.043) (0.043) (0.067) (0.00009)

CD 0.49 0.47 0.49 0.63 0.56 0.46 0.44 0.54 0.40

1 (1) 0 (1) 0 (2) 0 (1) 0 (1) 0 (1) 1 (1) 0 (2) 0 (1)

IF 1.15 2.32 3.70 0.90 2.99 8.23 13.61 1.75 2.66

Notes: This table contains the posterior means (standard deviations) of all country-specific model parameters. CD refers to the average

p-value of the Geweke (1992) convergence diagnostic across countries and where we also report the number of countries for which the test

rejects the null hypothesis of convergence at the 1% (5%) level. IF is the average inefficiency factor. Both diagnostics are computed using

4% tapered autocovariance matrices (LeSage, 1999).
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Figure C-1: Probabilities of high exposure regime in factor loadings

Posterior mean Sit (Pr(Sit) = 1)



Prior sensitivity: regime transition probabilities

Table C-2 contains additional results to assess the sensitivity of the baseline results with

respect to changes in the prior configurations of the regime transition probabilities q

and p. Scenario (1) uses a looser specification for the conditional probability to stay

in the ‘normal regime’. The prior configuration in (1) implies an expected value of 0.8

with a prior standard deviation of 0.16 (see Kim and Nelson, 1999). Even though this

scenario imposes less prior information than the baseline configuration, it still reflects

our belief that conditional on being in the ‘normal regime’, the probability of staying in

this regime is higher than switching to the ‘contagion regime’. As outlined in Section

3.6, loosening the prior for q results in a drop of the posterior mean of q for all countries,

which are in most cases moderate or minor, and in a few cases sizable (e.g. Sweden). This

configuration also results in a larger number of days in the high common factor exposure

regime given a certain probability threshold (not reported). However, the changed prior

does not meaningfully affect the remaining results presented in the paper. Thus, the

baseline estimation produces a conservative estimate for the number of days with an

increased common factor exposure.

Scenario (2) of Table C-2 is an estimation using a less informative prior for the con-

ditional probability to stay in the ‘contagion regime’, p. This alternative configuration

implies a uniform prior for p and leads to a drop in most of the posterior means of p.

A notable exception is Switzerland, where the posterior mean of p increases to above

0.9. While for most countries the number of identified days with elevated common factor

exposure remains similar to the baseline in Table 4, in the particular case of Switzerland,

the looser prior for p strongly affects the ‘identification’ of both regimes, resulting in this

market spending most days in the high exposure regime. Therefore, we conclude that a

certain amount of prior information is helpful to distinguish the two regimes. Finally,

the remaining results for most countries are largely unaffected by this change to the prior

configuration.
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Table C-2: Alternative prior configurations for transition probabilities

Baseline results
(1) Alternative prior for q (2) Alternative prior for p

q ∼ beta(4.2, 1.05) p ∼ beta(1, 1)

Country γ1 q p γ1 q p γ1 q p

Austria 0.603 0.902 0.402 0.579 0.868 0.395 0.612 0.873 0.202

(0.099) (0.056) (0.084) (0.109) (0.095) (0.083) (0.092) (0.059) (0.123)

Belgium 0.236 0.797 0.507 0.234 0.728 0.515 0.234 0.787 0.511

(0.042) (0.095) (0.092) (0.039) (0.12) (0.091) (0.053) (0.1) (0.205)

Czech Republic 0.713 0.913 0.483 0.676 0.869 0.472 0.728 0.899 0.363

(0.153) (0.069) (0.098) (0.156) (0.102) (0.096) (0.152) (0.068) (0.218)

Denmark 0.416 0.746 0.486 0.410 0.650 0.487 0.424 0.750 0.460

(0.066) (0.116) (0.092) (0.052) (0.129) (0.09) (0.069) (0.115) (0.189)

Finland 0.273 0.879 0.489 0.172 0.746 0.491 0.294 0.875 0.413

(0.364) (0.121) (0.101) (0.192) (0.179) (0.102) (0.374) (0.118) (0.282)

France 0.148 0.650 0.442 0.147 0.548 0.456 0.158 0.688 0.238

(0.044) (0.118) (0.088) (0.022) (0.133) (0.089) (0.06) (0.124) (0.162)

Germany 0.254 0.794 0.370 0.241 0.705 0.378 0.280 0.790 0.141

(0.038) (0.089) (0.08) (0.036) (0.132) (0.082) (0.041) (0.075) (0.102)

Greece 0.711 0.723 0.475 0.729 0.693 0.474 0.724 0.721 0.432

(0.062) (0.071) (0.079) (0.063) (0.078) (0.078) (0.067) (0.07) (0.127)

Hungary 0.887 0.875 0.560 0.843 0.849 0.552 0.880 0.890 0.619

(0.276) (0.063) (0.08) (0.183) (0.067) (0.078) (0.271) (0.059) (0.116)

Ireland 0.517 0.912 0.541 0.487 0.871 0.537 0.496 0.903 0.585

(0.114) (0.059) (0.083) (0.099) (0.09) (0.087) (0.122) (0.068) (0.14)

Italy 0.287 0.859 0.424 0.250 0.723 0.415 0.313 0.838 0.148

(0.108) (0.122) (0.099) (0.09) (0.191) (0.096) (0.085) (0.102) (0.132)

Netherlands 0.173 0.613 0.478 0.181 0.471 0.489 0.181 0.633 0.344

(0.044) (0.154) (0.096) (0.031) (0.15) (0.095) (0.045) (0.148) (0.221)

Norway 0.576 0.740 0.544 0.590 0.712 0.551 0.578 0.730 0.581

(0.045) (0.068) (0.069) (0.044) (0.074) (0.068) (0.044) (0.069) (0.087)

Poland 0.958 0.911 0.442 0.720 0.638 0.468 0.948 0.908 0.275

(0.243) (0.132) (0.093) (0.227) (0.257) (0.096) (0.204) (0.09) (0.157)

Portugal 0.390 0.750 0.541 0.397 0.705 0.542 0.392 0.759 0.604

(0.039) (0.078) (0.085) (0.04) (0.088) (0.084) (0.041) (0.078) (0.138)

Spain 0.518 0.956 0.463 0.467 0.930 0.464 0.507 0.944 0.351

(0.111) (0.031) (0.095) (0.117) (0.061) (0.095) (0.11) (0.038) (0.182)

Sweden 1.137 0.979 0.463 0.547 0.652 0.473 0.957 0.920 0.409

(0.269) (0.073) (0.089) (0.407) (0.253) (0.093) (0.432) (0.143) (0.24)

Switzerland 0.215 0.763 0.549 0.218 0.625 0.586 0.327 0.623 0.922

(0.054) (0.135) (0.104) (0.043) (0.163) (0.109) (0.07) (0.117) (0.08)

United Kingdom 0.374 0.899 0.572 0.380 0.890 0.569 0.373 0.905 0.622

(0.043) (0.043) (0.067) (0.046) (0.048) (0.068) (0.044) (0.044) (0.086)

CD 0.46 0.44 0.54 0.58 0.49 0.47 0.37 0.53 0.43

0 (1) 1 (1) 0 (2) 1 (1) 0 (2) 0 (2) 0 (3) 0 (1) 1 (3)

IF 8.23 13.61 1.75 19.62 22.26 3.09 14.08 15.49 10.42

Notes: This table contains the posterior means (standard deviations) of γ1, q and p. CD refers to the average p-value of the

Geweke (1992) convergence diagnostic across countries and where we also report the number of countries for which the test

rejects the null hypothesis of convergence at the 1% (5%) level. IF is the average inefficiency factor. Both diagnostics are

computed using 4% tapered autocovariance matrices (LeSage, 1999).
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Regime switches in factor loadings when allowing for infrequent

jumps in the mean equation

Table C-3: Number of days with high common factor exposure and average return effects
based on the specification in Equation (11)

Probability of Sit = 1

Country > 50% > 60% > 70% > 80% > 90%

AT 54 (−0.50) 28 (−0.87) 16 (−0.99) 3 (0.20) 0

BE 129 (−0.04) 41 (−0.09) 10 (0.01) 5 (0.44) 1 (1.56)

CZ 39 (−0.43) 19 (−0.39) 10 (−0.14) 6 (−0.86) 3 (−3.04)

DK 356 (−0.06) 124 (−0.11) 35 (−0.29) 9 (−0.63) 1 (−3.10)

FI 0 0 0 0 0

FR 617 (−0.00) 185 (0.01) 67 (0.05) 20 (0.04) 4 (0.23)

DE 157 (−0.00) 59 (0.03) 26 (0.09) 9 (0.44) 5 (0.80)

GR 520 (−0.02) 211 (−0.07) 92 (−0.05) 46 (−0.10) 17 (−0.15)

HU 206 (−0.10) 94 (−0.19) 33 (−0.31) 15 (0.19) 4 (0.07)

IE 46 (−0.14) 21 (−0.19) 12 (−0.47) 12 (−0.47) 5 (−0.15)

IT 17 (−0.69) 6 (−1.67) 3 (−2.62) 2 (−3.08) 1 (−4.08)

NL 677 (−0.01) 147 (−0.06) 32 (−0.03) 6 (−0.12) 0

NO 909 (−0.06) 385 (−0.12) 185 (−0.26) 71 (−0.60) 22 (−1.16)

PL 17 (−0.63) 11 (−0.86) 9 (−1.06) 6 (−1.07) 4 (−1.81)

PT 626 (−0.01) 215 (−0.08) 71 (−0.25) 31 (−0.13) 10 (−0.28)

ES 22 (−0.26) 15 (−0.42) 10 (−0.22) 6 (−0.95) 6 (−0.95)

SE 8 (−0.35) 7 (−0.56) 5 (−0.64) 4 (−0.56) 3 (−1.01)

CH 170 (−0.06) 39 (−0.10) 8 (−0.13) 2 (0.16) 0

GB 185 (−0.09) 104 (−0.12) 60 (−0.16) 28 (−0.18) 17 (−0.42)

Total 4755 (−0.05) 1711 (−0.12) 684 (−0.21) 281 (−0.30) 103 (−0.62)

Notes: This table contains the number of days where Pr(Sit = 1) exceeds the threshold. The number in

brackets refers to the average expected size of the return effect (in %), i.e. 1
K

∑
Pr(Sit = 1)γ1,ift, where

K denotes the number of high exposure days and the sum runs over all these dates.
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