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Introduction 

In this paper, we propose a methodology to incorporate a regime-based approach to portfolio 

optimisation with a specific focus on fixed income portfolios. A regime-based approach 

involves segmenting the market into distinct periods or "regimes", characterised by different 

market conditions, such as high or low volatility. By identifying these regimes, investors can 

adjust their portfolio strategies to better align with the prevailing market environment. For 

example, during a high-volatility regime, a portfolio manager might increase holdings in safer 

assets like government bonds to mitigate risk, whereas in a low-volatility regime, they might 

allocate more to higher-yielding assets to enhance returns. 

While regime-based approaches are not new, there is little analysis on their specific 

implementation within a fixed income universe. Typical approaches have focused on equities 

or on economic regimes across broad asset classes. Portfolios within an official institution 

setting require a slightly different approach, as they are typically only fixed income based and 

are rebalanced less frequently than the common daily frequency. 

We propose a two-stage approach to regime identification on a set of fixed income indices. In 

the first stage, we apply Principal Component Analysis (PCA) on the universe of fixed 

income indices to obtain a representation of the yield curve. The first principal component 

and its variance (the eigenvalue) effectively capture the overall level of interest rates and their 

variability, providing a concise summary of yield curve movements. We then use the variance 

of this first principal component to fit a Hidden Markov Model (HMM), which identifies the 

regimes inherent in the yield curve—specifically, a high-volatility regime and a low-volatility 

regime. 

By utilising financial market data through PCA, we avoid the difficulties of aligning 

economic data with more frequent financial market data, as economic indicators often have 

lower frequency and can introduce look-ahead bias. Focusing solely on financial market data 

ensures that our regime identification is timely and relevant to current market conditions. 

Identifying these regimes allows us to tailor the portfolio optimisation process to account for 

the differing risk-return profiles inherent in each regime. 

We apply this approach to portfolio optimisation, targeting a specific value-at-risk (VaR), and 

compare the results to a more traditional approach that does not account for regime changes. 

Our universe of investments covers US Treasury bond indices, French government bond 

indices, and German government bond indices separately. We include EUR and USD 
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Sovereign, Supranational, and Agency (SSA) bond indices, which are used in portfolio 

optimisation. 

We separate the paper into three main sections: 

• First Section: We take a detailed look at the results of the PCA on the underlying 

curves, illustrating how the principal components capture the key movements in the 

fixed income markets. 

• Second Section: We discuss Hidden Markov Models and apply them to the PCA 

output from the first section, demonstrating how the HMM identifies different market 

regimes based on the volatility of the principal components. 

• Final Section: We use this regime-based approach to perform a target VaR-based 

portfolio optimisation and compare the resulting portfolio with a more standard five-

year historical VaR approach. This is done for a portfolio consisting only of 

government bond indices and another portfolio that includes an SSA index. 

By adopting this regime-based methodology, portfolio managers can make more informed 

decisions that align with current market conditions, potentially improving risk-adjusted returns 

in fixed income portfolios. 
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Section 1: Principal Component Analysis 

PCA is a widely used technique to analyse data by reducing dimensionality while retaining as 

much of the variation as possible from the original dataset. In the context of fixed income 

portfolios, PCA transforms the data into a set of uncorrelated principal components (PCs) 

through eigen decomposition. This process yields eigenvectors and their associated 

eigenvalues. The eigenvalues represent the variance explained by each principal component, 

while the eigenvectors provide loadings—or weights—on the underlying data points. 

For example, consider a yield curve with tenors at the 2-, 3-, 5-, 7-, and 10-year points. PCA 

would produce eigenvectors with loadings on each of these tenors, effectively summarising 

how different maturities contribute to the overall movements of the curve. This is particularly 

attractive for fixed income portfolios because it allows us to represent complex yield curve 

dynamics succinctly within a few variables, rather than analysing multiple points individually. 

 

PCA is especially useful in fixed income because the first few principal components often have 

clear and intuitive interpretations (Litterman, 1991): 

• First Principal Component (Level Factor): Represents the overall level shift in 

interest rates across all maturities, typically explaining over 95% of the yield curve's 

variation. 

• Second Principal Component (Slope Factor): Captures changes in the steepness of 

the yield curve, reflecting differences between short-term and long-term interest rates. 

• Third Principal Component (Curvature Factor): Accounts for changes in the 

curvature of the yield curve, indicating how medium-term rates move relative to short 

and long-term rates. 

Illustrative example 

We perform PCA on the US Treasury curve across the 6-month, 1-, 2-, 5-, 7-, and 10-year 

maturities over the period from 1 June 2014 to 31 May 2024. By taking the covariance matrix 

of the daily changes and performing eigen decomposition, we extract the principal components 

and their associated variances.  
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Figure 1: US Treasury curve: First three principal component loadings (June 2014 – May 2024) 

 

 

Source: Bloomberg, ESM 

 

In Figure 1, the first principal component shows loadings that are all in the same direction, confirming 

it as the level shift factor. The second principal component displays loadings where the front-end and 

long-end of the curve have opposite signs, representing the slope factor. The third principal component's 

loadings indicate a curvature factor, being long in the belly of the curve and short at the wings. 

With six points on the curve, we obtain six principal components, but with declining importance to the 

overall movements in the yield curve. The first principal component, for example, explains 87% of the 

variance of the yield curve, while the first three components together account for 99% of the total 

variance. We can, therefore, concentrate solely on the first three principal components to analyse the 

overall movements in the yield curve. This demonstrates how PCA effectively reduces the 

dimensionality of the data while retaining the most significant variations. 
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Figure 2: Proportion of variation explained 

 

 

Source: Bloomberg, ESM 

 

Dynamic Analysis of Loadings 

The results cover the entire period from June 2014 to May 2024, however, if we would like to get a 

more granular view at the loadings at a specific point in time, we need to perform a rolling analysis. 

Here we face a slight complication. The orientation of the eigenvectors is arbitrary, meaning the signs 

of the loadings can flip without affecting the variance explained. This can complicate temporal 

comparisons. That is, for the first principal component (PC1), which usually describes the level, the 

loadings could either be all positive or all negative. In other words, while the loadings in Figure 1 for 

PC1 are all negative, they could have also been all positive. This causes an issue when performing 

rolling analysis as we look to do here as the signs of the loadings flip from positive to negative at 

random.  

To correct for this, we found two options based on existing literature: using the cosine similarity 

approach as in (Hirsa, 2023) for example, or the approach of (Ogita T. a., 2016), which uses the previous 

eigenvector as a starting point to estimate the next one. We describe these approaches in more detail in 

Box 1.  

In our approach, we have implemented the Ogita-Aishima algorithm, although both approaches yield 

sufficiently accurate results for our purposes. It is not strictly necessary to make this adjustment if we 

only use the rolling eigenvalues themselves, since the actual orientation of the eigenvectors is irrelevant 
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for the size of the eigenvalues. It does, however, allow us to analyse the drivers of the yield curve in a 

more granular manner.  

Figure 3: US Treasury curve: Loadings for the first principal component on a rolling 3-month 

basis 
 

 

Source: Bloomberg, ESM 

 

Figure 3 shows the rolling loadings for the first principal component (PC1) for the 1-, 2-,5-, and 10-

year tenors of the US Treasury curve. There is an interesting behaviour in the loadings over time 

especially when comparing pre- and post-2008. Whereas pre-2008, the loadings between the front and 

long end of the curve were in the same -0.3 to -0.5 region, after 2008 the long-end (10-year primarily) 

becomes more important to the level shift factor. This is especially true from about 2010 onwards, post 

QE2, when the ten-year point drives most of the movement in the curve, while the front-end (1- and 2-

year points) has little influence. This happens again for a second time in 2020 following the Fed’s 

response to the Covid crisis. As the Fed begins hiking rates, for example in the period 2016-2018 and 

in 2022, the front-end’s influence increases particularly in the 2-year point on the curve. This dynamic 

view reveals which points on the curve are driving the level shifts and how their contributions change 

over time, especially during periods of monetary policy changes. 

Cumulative Returns of Principal Components 

By examining the cumulative returns of the principal components, we can observe how each component 

captures different aspects of the yield curve movements. 
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Figure 4: US Treasury curve: Cumulative returns for the first three principal components2 
 

 

Source: Bloomberg, ESM 

 

In Figure 4, we show the cumulative returns of the first three principal components. As expected, the 

first component has the highest volatility and its cumulative return is indicative of the changes in the 

yield curve through the cycle of hikes (2004-2006, 2016-2018, and 2022 for example) and cuts (2000-

2003, 2007-2008, and 2019-2020 for example). The second principal component is indicative of 

changes in the slope of the curve, and in this case, is a proxy for flattener position given the loadings. 

We can perform the same analysis on the German government bond curve where we see a similar 

profile, although the front-end remains a much lower influence during the 2016-2018 period where the 

ECB kept policy rates on hold, in contrast to the Fed. 

 

 

  

 
2 It is important to compare the returns to the direction of the principal component loadings. In Figure 4, PC1 

has negative loadings on rates (long bond position), PC2 has a positive loading on front-end and negative 

loading on long-end (flattener position), while PC3 has positive loading on the belly, negative loadings on the 

wings (benefits when wings outperform the belly). 
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Figure 5: German yield curve: Loadings for the first principal component on a rolling 3-month 

basis 
 

 

Source: Bloomberg, ESM 

 

We show the cumulative returns for the first three principal components in Figure 6. There are broad 

similarities between the US and German principal components. Two differences, however, are the 

strong directional bias to the first principal component in Germany as the curve moved lower and rates 

stayed low for an extended period. Additionally, as rates were expected to remain low and as the ECB 

maintained its asset purchase programmes, the second principal component (indicative of slope) 

exhibits much lower volatility than that of the US.  
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Figure 6: German yield curve: Cumulative returns for the first three principal components 
 

 

Source: Bloomberg, ESM 

 

Focusing on the Variance of the First Principal Component 

For our regime identification purposes, we concentrate on the variance (eigenvalue) of the first principal 

component, which serves as a proxy for the volatility of the underlying yield curves. This approach 

allows us to encapsulate the yield curve's overall volatility into a single variable, simplifying the 

analysis without losing critical information. We show the variance of the first principal component for 

both the US and German yield curve in Figure 7. 
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Figure 7: German and US yield curve: Variance of first principal component (3-mo rolling) 

 

 

Source: Bloomberg, ESM 

 

Figure 7 shows that while the German yield curve has generally been less volatile than the US curve, 

recent periods like the COVID-19 crisis have seen similar levels of volatility in both markets. By using 

the variance of the first principal component, we capture these shifts in volatility succinctly. 

Box 1: Approaches to estimating eigenvectors on a rolling basis 

Using cosine similarity: 

In this approach, we take the cosine of the angle between the eigenvector from day to day to determine 

if the vectors are pointing in the same direction (the loadings have the same sign). This measure will 

oscillate between 1 and -1 depending on the relative direction of the vectors. For example, we take 

the first eigenvector (the loadings for the first principal component) from the previous day and 

compare it to the eigenvector for the current day. If the cosine similarity is less than zero, we can 

deduce that the two vectors are pointing in opposite directions, and we need to multiply one of them 

by -1. A good example of this is presented in (Hirsa, 2023). 

 

Using the Ogita-Aishima algorithm (Ogita T. a., 2016): 

This algorithm uses the previous eigenvectors as a starting point for the next eigenvector and then 

iteratively converges to the next set of eigenvectors based on the estimated eigenvalues. This ensures 

that the loadings have the same sign since if the signs were flipped on the following day, the 

associated eigenvector would be further away from the initial eigenvector used (the previous day’s 

eigenvector in our case). An example of the implementation of this algorithm in financial markets is 
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presented in (Bilokon, 2021). An extension of this algorithm is presented in (Ogita T. a., 2019), which 

attempts to handle clustered eigenvectors. 

 

 

Using PCA provides several advantages: 

• Simplification: It reduces the complexity of analysing multiple yield curve points by 

summarising them into principal components, particularly focusing on the first component for 

volatility. 

• Representation of Yield Curve Dynamics: PCA identifies which maturities contribute most 

to yield curve movements and how their influence changes over time. 

• Avoidance of Data Alignment Issues: By relying solely on financial market data, we sidestep 

the challenges of aligning economic data—which is often published less frequently and can 

introduce look-ahead bias—with financial market data. 

• Foundation for Regime Identification: The variance of the first principal component serves 

as an effective input for a Hidden Markov Model (HMM) to identify high and low volatility 

regimes inherent in the yield curve. 
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Section 2: Hidden Markov Models 

In the previous section, we introduced PCA and demonstrated how it can be used to decompose the 

yield curve into principal components. Our primary interest lies in the variance of the first principal 

component, which serves as a measure to identify different regimes inherent in yield curve movements. 

To effectively capture these regimes at each point in time, we need a methodology that can infer the 

underlying states driving the observed market dynamics. In this section, we propose the use of Hidden 

Markov Models (HMMs) to perform regime identification. 

Understanding Hidden Markov Models 

An HMM is a statistical model that describes a system governed by unobservable (hidden) states, where 

each state generates observable data according to a specific probability distribution. Intuitively, we can 

think of the process generating each day's returns as being in one of multiple hidden states or regimes. 

For simplicity, we assume two states reflecting different market conditions: a high-volatility regime and 

a low-volatility regime. Each day, the return is generated according to the state the process is in on that 

day, with returns having different distributions depending on the current state. 

HMMs are well-suited for identifying these unobserved regimes based on observed data, providing a 

robust framework to model state transitions and the probability of observing certain data given a state. 

In our context, the hidden states represent the volatility regimes of the yield curve, and the observed 

data is the variance of the first principal component derived from PCA. 

Applying HMM to Yield Curve Variance  

We fit a two-state HMM to the variance of the first principal component of the yield curve. This 

approach allows us to infer the probability of being in either the high-volatility or low-volatility regime 

at any point in time based solely on observed market data, thus avoiding the difficulties of aligning 

economic data—which can introduce look-ahead bias—with more frequent financial market data. 

Figure 8 shows the results of fitting a two-state HMM to the variance of the first principal component 

over the full sample period. The HMM identifies two distinct regimes: 

• High-Volatility Regime: Characterised by an average variance of 8%. 

• Low-Volatility Regime: Characterised by an average variance of 2%. 

By examining the distribution of daily changes in the first principal component under each regime, we 

can visualise the differences between them. 
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Figure 8: US Treasury curve: Variance of PC1 (eigenvalue) and high volatility states 
 

 

Source: Bloomberg, ESM 

 

Figure 9 illustrates that the high-volatility regime exhibits fatter tails compared to the low-volatility 

regime, indicating a higher probability of extreme movements in the yield curve. This has significant 

implications for portfolio optimisation and construction, as the underlying fixed income indices display 

different covariance dynamics in each regime. 

Understanding and identifying these volatility regimes is crucial for both risk management and asset 

allocation: 

• Risk Management: By knowing which volatility regime the market is currently in, portfolio 

managers can adjust their risk exposure accordingly. In a high-volatility regime, there is a 

greater chance of large swings in bond prices, which can significantly impact portfolio value. 

Managers might choose to reduce duration or increase the quality of holdings to mitigate risk. 

• Asset Allocation: The covariance structures of assets differ between regimes. Portfolio 

managers can optimise their asset allocation by using the appropriate covariance matrix 

corresponding to the current regime, leading to more efficient portfolios that better balance risk 

and return. 
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Figure 9: US Treasury curve: Distribution of daily changes in first principal component  
 

 

Source: Bloomberg, ESM 

 

Example: Constructing Efficient Frontiers Under Different Regimes 

To illustrate the practical application, we construct efficient frontiers for a portfolio of US Treasury 

indices under both volatility regimes. We use Intercontinental Exchange (ICE) indices covering US 

Treasury bills and bonds of various maturities (1-3 year, 3-5 year, 5-7 year, and 7-10 year). We assume 

that the expected returns for each index remain the same in both regimes but adjust the covariance 

matrix according to the historical covariances observed in each regime. 

The efficient frontiers reveal that, for the same level of expected return, the low-volatility regime offers 

a much lower standard deviation than the high-volatility regime. This difference is due to the flatter 

efficient frontier in the high-volatility regime, reflecting the higher variances and covariances among 

the indices. 
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Figure 10: Efficient frontier in high and low volatility states for a portfolio of US Treasury 

indices  
 

 

Source: Bloomberg, ESM 

Assumes (simplistically) that returns are the same for each state, but that the covariance matrix follows the historical 

covariance matrix in each state. Realistically the high state returns could be higher (but more volatile) as US Treasuries 

tend to rally in high volatility states. 

 

Incorporating regime identification through HMMs offers tangible benefits: 

• Enhanced Portfolio Optimisation: By adjusting the optimisation process to account for the 

current volatility regime, portfolios can be constructed to better align with market conditions, 

potentially improving risk-adjusted returns. 

• Dynamic Risk Assessment: Identifying the regime allows for dynamic risk assessment and 

proactive adjustments to the portfolio, rather than relying on static models that may not account 

for regime shifts. 

• Efficient Use of Market Data: Using financial market data exclusively ensures timely regime 

identification without the complications of aligning economic indicators, which can be sporadic 

and subject to revisions. 

• Mitigation of Look-Ahead Bias: By avoiding reliance on economic data that may introduce 

look-ahead bias, the methodology provides a more accurate and reliable basis for decision-

making. 
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By integrating HMMs with PCA-derived variance measures, we provide a robust methodology for 

identifying market regimes in fixed income portfolios. This approach enables portfolio managers to 

make informed decisions based on prevailing market conditions, ultimately enhancing portfolio 

performance and risk management. 
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Section 3: Portfolio Optimisation 

In this section we apply the PCA and HMM approaches described previously to a portfolio optimisation 

over a set of fixed income indices. The combination of PCA and HMM is strategic for effective regime 

identification and portfolio optimisation: 

• PCA Simplifies Complex Data: PCA reduces the dimensionality of the data by transforming 

multiple correlated index returns into uncorrelated principal components. The first principal 

component captures the most significant variance in the data—often associated with the overall 

level of interest rates. 

• Variance as a Volatility Measure: The variance of the first principal component serves as a 

concise and robust measure of market volatility. This single variable encapsulates the collective 

movements of multiple indices, providing a clear signal for regime shifts. 

• HMM Identifies Hidden Regimes: HMM uses the variance extracted from PCA as an 

observable input to model the hidden states of the market. It probabilistically determines 

whether the market is in a high-volatility or low-volatility regime based on the observed data. 

• Integration Enhances Responsiveness: By feeding PCA-derived volatility measures into the 

HMM, we create a responsive system that adapts to changes in market dynamics. This 

integrated approach allows us to detect and respond to regime shifts more effectively than using 

either method alone. 

Methodology 

We perform this analysis on separate universes of US Treasury indices, German government bond 

indices, and French government bond indices, before combining each with an SSA fixed income index 

in the same currency. The set of indices used are given in Annex A. The government bond indices used 

cover the 0-10 year maturities, while those used for SSA cover the 1-5 year maturities. Our sample 

period starts in 1991 for the US indices and in 1998 for the German and French indices. The period 

ends on 31 May 2024. We require at least ten-years’ worth of history, meaning that in the US case the 

regime-based portfolio begins around 2001 and in the German and French portfolios around 2008. 

We have no constraints other than the value-at-risk (VaR) target and, therefore, the optimisation would 

yield both a duration and curve position based on the resulting weights. The returns for the optimisation 

step are estimated using the respective points of the yield curve at the time, for each index. This is done 

for both the historic approach and the regime-based portfolio. 

While in Section 1 we performed PCA on the yield curve, we find using the indices directly provides 

moderately better results overall although the interpretation of the first three principal components 

(level, slope, and curve) remains the same. The PCA is performed on a rolling three-month basis, and 
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the resulting eigenvalue (the variance of the first principal component) is used in the HMM step of the 

model.  

In our analysis, up until now, we have looked at the full history when fitting the HMM. In this analysis 

we fit the HMM on an expanding window basis, fitting the model on all the output from the PCA step 

as at that point in time. The regime-based portfolio requires a large initial dataset to identify the regimes 

and we, therefore, start with an initial ten-year window and expand this as we step through time. 

Comparisons between the approaches are done over common periods (that is, from 2010 onwards). 

The rebalance is performed monthly and within the return optimisation step, we include a penalty term 

to ensure that the change in weights is not too volatile from one month to the next3. The penalty term 

used throughout is 10% of the sum of the squared differences in weights from one month to the next. 

This ensures a smoother transition in weights relative to the change in VaR, which is important for larger 

portfolios and for managing execution costs. This penalty term is used throughout all optimisations.  

Our goal is to construct a portfolio with a VaR target, specifically, a 3% VaR at the 99th percentile over 

a one-year horizon by considering the estimated regime at the time of rebalance. In our regime-based 

approach, we separate the history up until the rebalance date into two regimes based on the PCA and 

HMM model. We then use the data from the current regime at rebalance date to estimate a VaR and 

construct the portfolio. We compare our results with a typical historical VaR with a five-year lookback 

window approach. 

In summary, at each rebalance date (monthly), the regime-based approach involves the following multi-

step process: 

• Perform a rolling (three-month) PCA on the underlying index returns up to rebalance date, 

• Extract the rolling eigenvalue of the first principal component (the variance), 

• Fit a two-state HMM using the eigenvalue as a feature, 

• Separate the history of index returns and proposed portfolio returns according to the regime 

classification, 

• Estimate VaR (historic) for the current regime as per the estimate from the HMM, 

• Optimise the portfolio weights such that annual VaR is 3% at the 99th percentile, and with the 

10% penalty term to ensure smooth weight. 

Results: Government bond portfolios 

Table 1 shows some of the metrics for the portfolio optimisations across the US, German and French 

government bond indices. In all three cases, the regime-based approach improves the actual portfolio 

 
3 By including the 10% penalty, we ensure that the turnover generated needs to be compensated by additional 

return. For example, assuming a 5% turnover in portfolio weights, the additional return would need to exceed 

10% x 5 = 5bps. 
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VaR and reduces the number of VaR exceedances closer to the 1% level we would expect. However, 

the results are much better in the US case than France and especially Germany, where there are only 

minor improvements.  

Table 1: Metrics for regime-based and standard five-year historical VaR portfolio optimisation 

  United States Germany France 

  
Regime 

5-yr 

Historical 
Regime 

5-yr 

Historical 
Regime 

5-yr 

Historical 

Average Duration 1.6258 1.7464 2.1586 2.0849 2.1581 2.0933 

Actual Portfolio VaR -3.04% -3.56% -3.35% -3.67% 3.19% -3.73% 

Comp. Annual Growth 

Rate 
1.89% 1.86% 0.72% 0.65% 0.95% 0.80% 

Annualised Volatility 1.57% 1.76% 1.42% 1.43% 1.42% 1.49% 

Sharpe Ratio 0.046 0.040 0.028 0.024 0.037 0.028 

CAGR/unit duration 1.163 1.066 0.334 0.314 0.441 0.384 

CAGR/unit VaR 0.039 0.032 0.013 0.011 0.018 0.013 

Skewness -0.081 0.236 0.189 0.454 0.117 0.426 

Kurtosis 3.876 5.666 3.932 7.053 4.328 8.954 

VaR Exceedances 1.07% 1.77% 1.58% 1.58% 1.24% 1.81% 

# Annual VaR for actual portfolio returns 
* Short-term bill yield used as risk free rate 

US start 2002, Germany and France start 2008 

 

In all the portfolios the kurtosis4 is much lower for the regime-based portfolio, indicating much lower 

probabilities of extreme events. However, the skewness5 is also much lower, and in the case of the US 

is slightly negative. This might be an indication of the regime-based approach only removing extreme 

positive observations. Despite this, however, the regime-based portfolio improves the Compound 

Annual Growth Rate (CAGR) and the Sharpe ratios and lowers the VaR of the portfolio’s return, 

indicating that there is a significant reduction of negative extreme observations as well. 

In general, however, it does appear this approach is much more effective in the US Treasury market 

than that of France or Germany. 

In Figure 11 we show the duration of the regime-based portfolio relative to the five-year historical VaR 

portfolio for the US indices. We note again, for this analysis, that the only difference between the two 

 
4 This measures the "tailedness" of a distribution, or the likelihood of extreme events. A higher kurtosis indicates 

a higher probability of extreme positive or negative returns, often referred to as "fat tails." 
5 This measures the degree of asymmetry in a distribution. A negative skewness indicates a higher probability of 

negative deviations from the mean and vice versa. 
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portfolios is the historic returns used in the VaR calculation, the expected returns are set to the same 

values for each portfolio. 

As expected, during high volatility periods, the regime-based portfolio has a shorter duration than the 

historical VaR approach, however, pre-2008, during low volatility periods, the regime-based approach 

has a higher duration than the historical VaR portfolio (for example, 2005-2006). This is likely because 

there are a number of high volatility periods in short succession which remain within the five-year 

window leading to lower risk-taking. 

Figure 11: Duration of the US regime-based to standard five-year historical VaR portfolio  
 

 

Source: Bloomberg, ESM 

 

After 2008 however, we enter an extended period of low volatility and since the regime-based portfolio 

uses the full history, it still embeds some of the higher low volatility periods from the beginning of the 

sample. Therefore, despite increasing duration, it becomes shorter than the historical VaR portfolio by 

as much as 60 points in duration in 2016. 
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Figure 12: Duration of the Germany regime-based to standard five-year historical VaR portfolio  
 

 

Source: Bloomberg, ESM 

 

Figure 12 shows the same active duration for the German indices. Here we have a smaller period to 

compare, although the results are similarly to the US case. After 2011 and 2012, the regime-based 

portfolio maintains a higher duration as it moves into the low volatility regime before the standard five-

year historical VaR portfolio catches in duration terms in 2017. After this, the five-year historical VaR 

portfolio is generally longer duration and specifically into the 2019 and 2022 higher volatility periods 

where the regime-based portfolio adjusts its duration lower. 

Expanding to include SSA 

In this section, we expand our analysis by including the SSA indices in Annex A into the US, Germany 

and France government portfolios. The approach is the same as in the previous section but including 

the relevant currency’s SSA index (USD or EUR).  
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Table 2: Metrics for regime-based and standard five-year historical VaR portfolio optimisation including SSA 

  United States Germany France 

  

Regime-

based 

5-yr 

Historical 

Regime-

based 

5-yr 

Historical 

Regime-

based 

5-yr 

Historical 

Average Duration 1.6146 1.8515 2.4823 2.6535 2.3835 2.6013 

Actual Portfolio VaR -2.98% -3.67% -3.01% -3.68% -3.13% -3.96% 

Comp. Annual Growth 

Rate 
1.82% 1.86% 1.18% 1.04% 1.29% 1.07% 

Annualised Volatility 1.36% 1.61% 1.31% 1.48% 1.43% 1.54% 

Sharpe Ratio 0.053 0.468 0.055 0.041 0.054 0.039 

CAGR/unit duration 1.128 1.005 0.477 0.392 0.542 0.412 

CAGR/unit VaR 0.038 0.031 0.024 0.018 0.025 0.017 

Skewness 0.024 0.009 0.011 0.091 -0.061 0.042 

Kurtosis 6.488 6.799 4.507 8.092 3.554 6.721 

VaR Exceedances 0.99% 1.58% 1.04% 1.73% 1.26% 1.98% 

 

Table 2 shows the same metrics as in Table 1 but including the respective 1-5Yr SSA index. Here the 

regime-based portfolio performs well across all three regions, and arguably better than in the case 

without SSA indices. Realised portfolio VaR’s are close to the target of 3% and VaR exceedances are at 

the 1% level in the case of the US and Germany, with France improving from 1.98% to 1.26%. 

Furthermore, the regime-based portfolios all show improved CAGRs, lower volatility, and higher 

Sharpe ratios.  

While the duration profile of the regime-based portfolios is similar to the simulation without SSA, the 

weight allocation between the two simulations is slightly different. Figure 13 shows the monthly 

weights for the US regime-based portfolio with SSA, while Figure 14 shows the weights without SSA. 
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Figure 13: US Regime-based portfolio weights including SSA 
 

 

Source: Bloomberg, ESM 

 

In the case without SSA, during low volatility periods there is a mixture of 5-7Yr and 7-10Yr allocation 

together with a large positioning in US T-Bills. Including SSA, the weights to the 5-7Yr and 7-10Yr 

indices are essentially zero, except for a short period in 2013/2014 where there is a small allocation to 

7-10Yr. Mostly, however, these allocations are replaced by allocations to SSA and during most of low 

volatility periods the regime-based portfolio with SSA is a mixture of T-Bills and SSAs.  

One exception is the 2015-2018 period, where there is a mixture of 1-3Yr and SSA. This contrasts with 

the simulation without SSA where there is a 100% allocation to 1-3Yr during the same period. 
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Figure 14: US Regime-based portfolio weights without SSA 
 

 

Source: Bloomberg, ESM 
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Section 4: Conclusion 

In this paper, we have presented a methodology that integrates Principal Component Analysis (PCA) 

and Hidden Markov Models (HMM) to implement a regime-based approach in portfolio optimisation 

for fixed income portfolios. This was done to separate the historical observations into two regimes, 

namely, a high volatility and low volatility regime. Our approach leverages the strengths of both PCA 

and HMM to identify underlying market regimes based solely on financial market data, thereby 

avoiding the pitfalls of aligning economic data with higher-frequency market data and the risk of look-

ahead bias. 

We showed in Section 2 that using this approach, we can obtain two distinct distributions of returns 

with the high volatility regime displaying fatter tails as we would expect. We used these distributions 

to build a simple efficient frontier. As expected, the variances and covariances of the relevant indices 

increase in the high volatility regime, causing the efficient frontier in this regime to be flatter than the 

low volatility regime. This causes the volatility to be higher in the case of the high volatility regime for 

the same expected return.  

We used this approach to backtest a portfolio strategy where we target a level of 3% of VaR at the 99th 

percentile. In the regime-based portfolio, we use the historical observations from the regime that the 

model estimates we are in at each rebalance date and compare this to a standard 5-year historical VaR. 

Using a universe of government bond indices, we find that this approach reduces the realised portfolio 

VaR closer to the 3% level and reduces the VaR exceedances closer to the expected 1% level. 

Furthermore, the portfolio has a higher return and lower volatility profile than the more standard 

approach. The results, however, are better in the US case than that of Germany and France where the 

improvement is less significant.  

We extend this by adding in a 1-5Yr SSA index to the universe. The results in this case are better in all 

cases, including Germany and France with higher returns and better risk statistics in general. 

Overall, we find this methodology sufficiently promising to apply it in a regime-aware approach in 

fixed income portfolio optimisation. Integrating PCA and HMM into fixed income portfolio 

optimisation provides a robust framework for incorporating regime-based strategies. By capturing the 

essential movements of the yield curve and identifying hidden volatility states, portfolio managers can 

make more informed decisions that are aligned with current market dynamics. 

Some areas where we think further research could add value include: 

• In some cases, we find that high volatility leads to higher returns for government bonds (2008 

for example), whereas other high volatility periods are detrimental to government bond returns 
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(2022 for example). It is possible that including other assets would allow for fitting HMM’s 

with more than two regimes that can better distinguish between these two.  

• Pre-empting the regime, using a machine learning approach could add further value by allowing 

the portfolio to adjust sooner to future regimes.  
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Annex A 
List of indices used as underlying securities for portfolio optimisation 

Ticker Security Name Asset Class Currency 

G0FB ICE BofA French Treasury Bill Index France EUR 

G1F0 ICE BofA 1-3 Year France Government Index France EUR 

G2F0 ICE BofA 3-5 Year France Government Index France EUR 

G3F0 ICE BofA 5-7 Year France Government Index France EUR 

G4F0 ICE BofA 7-10 Year France Government Index France EUR 

G0DB ICE BofA German Treasury Bill Index Germany EUR 

G1D0 ICE BofA 1-3 Year German Government Index Germany EUR 

G2D0 ICE BofA 3-5 Year German Government Index Germany EUR 

G3D0 ICE BofA 5-7 Year German Government Index Germany EUR 

G4D0 ICE BofA 7-10 Year German Government Index Germany EUR 

ES81 

ICE BofA 1-3 Year excluding Aa3/AA- & Lower Euro 

Supranationals & Foreign Sovereigns EUR SSA EUR 

ES82 

ICE BofA 3-5 Year excluding Aa3/AA- & Lower Euro 

Supranationals & Foreign Sovereigns EUR SSA EUR 

ES86 

ICE BofA 5-10 Year excluding Aa3/AA- & Lower Euro 

Supranationals & Foreign Sovereigns EUR SSA EUR 

G0BA ICE BofA US Treasury Bill Index US USD 

G1O2 ICE BofA 1-3 Year US Treasury Index US USD 

G2O2 ICE BofA 3-5 Year US Treasury Index US USD 

G3O2 ICE BofA 5-7 Year US Treasury Index US USD 

G4O2 ICE BofA 7-10 Year US Treasury Index US USD 

DS2V 

ICE BofA 1-5 Year AAA-AA Developed Markets US 

Foreign Government & Supranational Index USD SSA USD 
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