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1 Introduction

“FOMC participants (Board members and Reserve Bank presidents) indicated that consider-
able uncertainty surrounded the outlook for economic growth and that they saw the risks around
that outlook as skewed to the downside.”

Monetary Policy Report to Congress, Federal Reserve Board, Feb. 2008 (p.2)

“The outlook for the UK and global economies remains unusually uncertain. [...]
The risks are skewed to the downside.”

Monetary Policy Report, Bank of England, Aug. 2020 (p.1)

Assessing macroeconomic risks and analysing their potential impact on the economy is
a key focus of economic policy institutions. Such risks are often not balanced around the
baseline outlook, and the concept of skewness has been a device for policy-makers to com-
municate their beliefs about the evolution of risks. The quotes above are examples of central
bank communication about, respectively, the onset of the Great Recession and the aftermath
of the Covid-19 shock. Therefore, a more precise assessment and understanding of eco-
nomic asymmetries supports a better communication of potential risks and the adoption of
economic policies to mitigate them. The academic literature has also used skewness to char-
acterise the asymmetric effects of economic shocks due to, for instance, non-linearities (e.g.
Petrosky-Nadeau et al., 2018; Jensen et al., 2020; Mumtaz and Theodoridis, 2020) or particu-
lar adverse events (e.g. Barro, 2009; Gourio, 2012; Ferndndez-Villaverde and Levintal, 2018).
In this paper, we develop a new measure of expected macroeconomic skewness for the US
economy, reflecting variations in the balance of risks of a large number of (nominal and real)
macroeconomic and financial indicators. We contrast this measure with alternative mea-
sures of macro and micro skewness, and investigate the relationship between fluctuations in
aggregate macroeconomic skewness and the business cycle.

A long-standing literature has argued that macroeconomic fluctuations are plagued by
asymmetries, highlighting that recessions tend to be relatively deeper and more pronounced
than expansions (Neftci, 1984; Hamilton, 1989; Sichel, 1993; Morley and Piger, 2012). More
recent work has studied the asymmetry of the conditional distribution of GDP growth, doc-
umenting the presence of procyclical GDP growth skewness related to the state of macro-
financial conditions (e.g. Adrian et al., 2019; Loria et al., 2020; Delle Monache et al., 2021;
Forni et al., 2021).! These studies focus on measuring (expected) asymmetry of a single
macroeconomic variable, namely GDP growth. While GDP is one of the most representa-

tive measures of the business cycle, it is unclear to what extent conditional skewness in GDP

!Theoretical and empirical contributions highlighting the role of time-varying skewness include, for example,
Colacito et al. (2016), Dew-Becker et al. (2019), Jensen et al. (2020) and Feve et al. (2021) at the macro level, and
Busch et al. (2018), Salgado et al. (2019), and Dew-Becker (2021) at the micro level.



growth summarises fluctuations in downside risk for the broader macroeconomy. This high-
lights the need for an economy-wide measure covering also, for example, prices, labour mar-
ket indicators and financial variables. We derive a new measure of aggregate expected skew-
ness, which represents a common factor driving the individual conditional skewness series
of the indicators included in the McCracken and Ng (2020) dataset. The latter are computed
using robust asymmetry measures (Kelley, 1947), where time-varying asymmetry derives
from the relative movements of the conditional quantiles of the distribution captured us-
ing quantile regression techniques (Koenker and Bassett, 1978; Engle and Manganelli, 2004).
This procedure allows us i) to derive summary measures that refer to different subgroups
(e.g. prices, labour market indicators and financial variables) and ii) to understand which
variables contribute most to overall skewness. Finally, the simplicity of the derivation al-
lows the timely update of the series, which can be downloaded from the authors” websites.

The common skewness factor explains only a limited part of the dynamics in expected
skewness for most of the macroeconomic indicators. It explains more of the skewness varia-
tion of the real economy variables (including income, labour markets, orders and sales, and
production indicators) compared to, for example, prices. Moreover, the factor accounts for a
non-negligible fraction of the conditional asymmetry in some of the financial indicators, in
particular non-household balance sheet indicators, whereas it is less related to the skewness
in interest rates and credit measures.

The economy-wide measure is strongly procyclical and is highly, but not perfectly, cor-
related with the skewness of GDP growth, meaning that the latter may not always capture
economy-wide risks. Our measure also co-moves with the GDP growth skewness that con-
ditions on past macro-financial data (Adrian et al., 2019). This is in spite of the fact that
our measure captures common movements in conditional asymmetry across a large num-
ber of indicators, where the skewness of each variable is derived using only information
contained in past observations of the variable itself. This has two advantages: i) it does
not require to identify the most appropriate predictors for each of the variables and ii) it
allows for the possibility that macroeconomic asymmetries are not related to — or move in
tandem with — financial conditions, as it was the case during the Covid-19 pandemic crisis.
Our expected skewness factor is also highly correlated with the cross-sectional skewness of
employment growth computed at the firm level by Salgado et al. (2019), which is remark-
able since the data and methodologies used to construct these two measures are completely
different. By contrast, our measure is only very mildly correlated with indicators of finan-
cial market skewness, including stock return skewness, either computed at the market level
(Dew-Becker, 2021) or the firm level (Salgado et al., 2019).

Our second contribution relates to investigating the role of our skewness factor in the US



business cycle. In recent studies, Salgado et al. (2019) and Forni et al. (2021) demonstrate
that shocks to the cross-sectional skewness of firm-level stock returns and the predictive
GDP growth distribution, respectively, can produce contractionary movements in macroe-
conomic and financial indicators. Building on these results, we show that revisions in ex-
pected skewness, which are associated with an increase in perceived downside risk, lead to
a substantial contraction in output, consumption, and investment, while leaving prices and
TFP broadly unaffected. Remarkably, the IRFs of such a shock are almost identical to those
documented in Angeletos et al. (2020). In fact, revisions in expected skewness are strongly
correlated with the main business cycle (MBC) shock identified in Angeletos et al. (2020). This
finding is robust to various sensitivity exercises. Specifically, revisions in expected skewness
are distinct from movements in aggregate volatility and uncertainty, and appear unrelated
to alternative shocks capturing credit risk, productivity, fiscal policy, and monetary policy.

Our empirical results highlight that any model that has the ambition to explain the main
force of macroeconomic fluctuations needs to allow for higher-order dynamics and possibly
relate those to economic agents’ varying perception of downside risk. In this regard, within
theories that suggest that a single shock is driving the business cycle, this key driver of
macroeconomic fluctuations also needs to account for the bulk of the variation in revisions
of perceived macroeconomic risk. Theories allowing for i) confidence or sentiment shocks
(Angeletos and La’O, 2013; Angeletos et al., 2018); ii) the possibility of rare disasters (Rietz,
1988; Barro, 2006; Barro and Ursua, 2008; Gabaix, 2008; Barro, 2009; Gourio, 2012; Wachter,
2013; Petrosky-Nadeau et al., 2018; Jorda et al., 2020); iii) informational frictions and learning
asymmetries (Veldkamp, 2005; Ordonez, 2013); or iv) left-skewed uncertainty of households
or firms (Salgado et al., 2019), could provide promising avenues.

The remainder of the paper is structured as follows: Section 2 derives the aggregate ex-
pected skewness factor. Section 3 presents the VAR results while Section 4 discusses various

robustness checks. Finally, Section 5 concludes.

2 A data-rich skewness measure for the US economy

This section presents a new measure of expected asymmetry based on a large dataset of
macroeconomic and financial variables. To construct the skewness measure, we use the
quarterly version of the McCracken and Ng (2016) dataset (FRED-QD) that contains 248
time series starting from 1959 and categorised into 14 groups.? All variables are transformed

to make them stationary by using the transformations suggested by the authors. We remove

*These are national income and product accounts (NIPA); industrial production; employment and unemployment; hous-
ing; inventories, orders, and sales; prices; earnings and productivity; interest rates; money and credit; household balance
sheets; non-household balance sheets; stock markets; exchange rates; and other.



those series that have missing observations over our sample period 1960:Q1-2019:Q4, which
reduces the number of variables to N = 211. Next, we estimate for each (de-meaned) vari-
able y; and each quantile level p = {10%, 50%, 90%}, the following autoregressive quantile
regression as developed in Engle and Manganelli (2004)

QP (yix) = B + BYQP (Yist—1) + Boyit—11(Yi—1 > 0) + BLyi—11(yi—1 < 0), (1)

wherei =1,..., N and ¢t = 2,...,T. This asymmetric slope model (Engle and Manganelli, 2004)
allows for a different impact of past observations on the respective quantiles, depending on
whether they lie above or below the unconditional mean of the series. This permits an asym-
metric impact of contractions and expansions in each variable on the different quantiles, so
that, for instance, a recession can affect downside risk without necessarily affecting upside
risk. In addition, the model allows the quantiles to be persistent, which seems appropriate
given the well-documented persistence of the first two moments of many macroeconomic
series (see, for example Antolin-Diaz et al., 2017).3 The model parameters are estimated
by regression quantiles (Koenker and Bassett, 1978) and further details can be found in En-
gle and Manganelli (2004). The conditional quantile autoregressive model belongs to the
class of observation-driven models, for which the trajectories of the time-varying parame-
ters are perfectly predictable one-step-ahead given past information (Cox, 1981). Using the
estimated model parameters from these quantile regressions, and assuming that agents” use
Equation (1) to form their expectations, we compute for each variable the one-step-ahead

expected, or predicted, Kelley skewness (Kelley, 1947)

Ei[Q7 1] + Ee Q7] — 2B Q77 4]

E;[Skew(y;, =
o (Yit41)] Ee[QF7 1] — Ee[QY ]

(2)

Since each quantile estimate is computed as a (variable-specific) moving average of a non-
linear function of the variable itself, there is no reason ex-ante to expect that the skewness
of any series displays a particular cyclical behaviour or co-moves across indicators. Our
overall measure of expected asymmetry is then constructed as the first principal component
obtained from the set of series-specific expected skewness measures, where each measure
is first standardised by subtracting the series-specific mean and dividing by its standard
deviation (see, e.g., Stock and Watson, 2002).# Since the skewness factor is based on PCA, its

sign is not identified. We identify the sign by assuming a positive correlation between the

*Since we are interested in capturing cyclical movements in skewness rather than slow-moving trends, we re-
strict the degree of persistence, ie. 0 < 7 < 0.8.

*While somewhat different from our approach, Chen et al. (2021) is another example of combining quantile
regression and factor analysis to measure, in their case, co-movement across quantiles.
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skewness factor and the skewness of GDP growth. The factor reflects common movements
of skewness across a large number of macroeconomic and financial indicators and does not
necessarily overlap with the skewness of any specific indicator, e.g. the skewness of GDP
growth. Moreover, the common factor should be relatively immune to idiosyncrasies and
noise in the measurement of expected skewness for each of the individual series arising, for
instance, from the estimation of the time-varying quantiles. This relies on such noise being
idiosyncratic, which is arguably a reasonable assumption since the quantile model does not
include common predictors. Appendix A presents a simulation exercise showing that our
two-step approach to construct the skewness factor does not yield spurious results, i.e. the

factor is, on average, zero if the DGP does not feature conditional skewness.

Table 1: Descriptive statistics of skewness variation explained by first principal component (in %)

Group Variables Mean Median Max. Min.
National income and product accounts 22 18.3 8.9 55.9 0.1
Employment and unemployment 44 17.9 14.1 66.7 0.0
Inventories, orders, and sales 6 15.5 17.9 26.7 0.3
Non-household balance sheets 11 144 12.7 28.1 0.8
Industrial production 15 129 9.8 43.9 0.4
Stock markets 5 12.6 8.0 342 0.2
Exchange rates 4 12.5 14.5 204 0.5
Household balance sheets 9 9.7 8.7 26.8 0.0
Housing 6 9.4 7.5 20.2 0.3
Prices 46 8.9 5.4 52.1 0.0
Interest rates 18 8.5 4.1 50.9 0.0
Earnings and productivity 10 7.2 5.4 19.9 0.0
Money and credit 14 6.2 3.0 215 0.2

Note: This table presents descriptive statistics for the shares of variation of the individual skewness series
explained by the skewness factor (in %). The grouping follows McCracken and Ng (2020). The group Other

has been dropped from this table as it only contains one variable with a low share of explained variation.

This skewness factor explains around 12% of the variation across the individual skew-
ness series. While appearing low, this is not surprising given that the dataset includes many
series with a small degree of asymmetry that load only weakly on the common factor.” Table

1 illustrates this point by showing the share of variation explained by the skewness factor for

SFor comparison, the first principal component of the actual data accounts for around 20% of the variation, while
a common volatility (GARCH) factor (see Section 4) accounts for around 26% of the variation in dispersion.
Lastly, a common factor of a quantile-based dispersion measure (expected interquartile range), accounts for
around 24% of the variation.



the groups of variables. The skewness factor tends to explain more of the skewness variation
of the real economy variables including NIPA, labour markets, and production indicators
compared to, for example, prices. Moreover, the factor accounts for a non-negligible fraction
of the conditional asymmetry in some financial indicators such as non-household balance
sheets, stock markets and exchange rates, whereas it accounts only for a smaller fraction of
the skewness variability in interest rates and money and credit indicators.

Existing studies have largely focussed on the conditional asymmetry of a single variable,
i.e. GDP growth (see, for example, Adrian et al., 2019; Loria et al., 2020; Jensen et al., 2020;
Forni et al., 2021; Castelnuovo and Mori, 2022). This is different from our data-rich approach
where the skewness factor reflects variation in risks of a large number of macroeconomic
and financial indicators. The upper panels of Figure 1 compare this expected skewness fac-
tor with the individual (de-meaned) skewness series of GDP growth obtained from different
conditional quantile models. Figure 1(a) shows that our skewness factor is strongly corre-
lated with the individual GDP skewness series retrieved using the conditional autoregres-
sive quantile model described above. The two series display a similar procyclical behaviour.
In particular, aggregate expected skewness drops strongly during recessions and moves to
mildly positive values during the expansionary phases of the cycle.

Interestingly, the documented correlation with GDP growth skewness does not depend
on the inclusion of GDP itself in the underlying dataset. In fact, the skewness factor appears
very robust to the choice of the specific dataset. To illustrate this aspect, we have also com-
puted an alternative skewness factor based on a subset of 101 variables that largely match
those used in Stock and Watson (2012).° Notably, real GDP and several expenditure com-
ponents are not part of this smaller dataset. Nevertheless, the correlation with GDP growth
skewness remains very similar, around 0.8. In spite of their similarities, there are also im-
portant differences between our measure of aggregate expected skewness and the expected
skewness of GDP growth. In particular, the latter features a distinct downward trend in the
last part of the sample, which is in line with the findings of Delle Monache et al. (2021) and
appears to be a feature not shared by other indicators in our dataset.

A growing literature starting from Adrian et al. (2019) has recently developed measures
of downside risk and skewness for future GDP growth conditional on measures of financial
conditions. Therefore, Figure 1(b) contrasts our skewness factor with the (Kelley) skewness
of the fitted growth distribution based on the model specification of Adrian et al. (2019).
Quantile regressions that include financial conditions imply a more asymmetric conditional

growth distribution and a longer left tail during recessions.

®The respective variables are explicitly labelled in the McCracken and Ng (2020) dataset. Figure D-1 in Appendix
D compares the two skewness factors which are highly correlated.



Figure 1: Skewness factor vs. other measures of skewness

(a) Exp. GDP skew and exp. skewness factor (b) Exp. GDP skew (ABG) and exp. skewness factor
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Note: Figure 1(a) shows the expected skewness factor together with the individual skewness series of quarter-
over-quarter real GDP growth derived based on the quantile specification in Equations (1)-(2). Figure 1(b) shows
the skewness factor together with the (Kelley) skewness of GDP growth obtained using the approach of Adrian
et al. (2019) (ABG). This series is based on quantile regressions of real GDP growth on lagged growth and the
lagged National Financial Conditions Index (NFCI) computed by the Chicago Fed. Figure 1(c) shows the skew-
ness factor (annual avg.) together with the (employment-weighted) cross-sectional Kelley skewness of firms’ log
employment growth obtained from Salgado et al. (2019) (SGB) for the period 1976-2014. Figure 1(d) shows the
skewness factor together with i) the monthly option-implied measure of market skewness for the S&P 500 devel-
oped in Dew-Becker (2021) (DB, quarterly avg., 1983:Q2-2019:Q4), and ii) the cross-sectional (Kelley) skewness
of firms’ daily stock returns within a month computed in Salgado et al. (2019) (SGB, quarterly avg., 1964:Q1-
2015:Q1). All alternative skewness series are de-meaned and the scale of the SGB financial skewness measure is
adjusted for comparability with the DB measure. Gray areas are NBER recessions.



We document a sizeable correlation between our expected skewness factor and the ex-
pected growth skewness based on the Adrian et al. (2019) approach, which is around 0.6.
While this correlation is simply a stylised fact, it highlights that elevated asymmetry dur-
ing downturns is a feature shared by a number of economic indicators and not necessarily
related to fluctuations in financial conditions (see also Plagborg-Moller et al., 2020).

We also compare our measure of macro skewness with micro-level and financial market
measures of asymmetry. First, Salgado et al. (2019) analyse the cross-sectional skewness of
firm-level outcomes such as employment growth and sales, and find these series to be pro-
cyclical. Figure 1(c) compares the cross-sectional (Kelley) skewness of firms” employment
growth (Salgado et al., 2019) with our expected skewness factor.” Both series move together
closely and share a correlation of around 0.8. Given the different underlying methodolo-
gies, we interpret this result as i) potential evidence that the same shocks or mechanisms
drive both firm-level and aggregate skewness and ii) an affirmation of our interpretation of
the skewness factor as an economy-wide skewness measure. Second, Figure 1(d) contrasts
our expected skewness factor with two measures of financial market skewness. Specifically,
we show the option-implied skewness of the S&P 500 index computed at the market level
by Dew-Becker (2021), and the cross-sectional firm-level series of stock return skewness of
Salgado et al. (2019). The correlation between the skewness factor and, respectively, option-
implied market-level skewness and cross-sectional return skewness is relatively low. This
provides further support to the interpretation of the aggregate skewness factor as a measure
of macroeconomic skewness which is distinct from financial market skewness.?

Lastly, our skewness measure correlates with — but is still quite distinct from — aggregate
volatility and uncertainty.” Table D-1 in Appendix D shows a correlation matrix includ-
ing the expected skewness factor, the first principal component of the actual data (X) and
squared data (X?) akin to Gorodnichenko and Ng (2017), a common factor of the expected
interquartile ranges derived from Equation (1), an expected volatility (GARCH) factor, and
two popular measures of uncertainty (Jurado et al., 2015; Ludvigson et al., 2021).1° For all
measures, except the uncertainty indices, the dataset is the same as the one used to extract

skewness. Given the procyclicality of the skewness factor, it is not surprising to find negative

"To preserve the forward-looking character of the skewness factor, we compute the annual average for each year
t over the period Q4 (t) to Q3 (¢ + 1). However, this implies that for the annual series, expectations about
skewness in ¢t + 1 are no longer formed conditional on information in year ¢ only. The firm-level skewness series
was directly taken from the replication files provided by Salgado et al. (2019). The authors compute this series
based on the US Census Bureau’s Longitudinal Business Database.

8L udvigson et al. (2021) highlight a similar disconnect between macro and financial market uncertainty.

?Orlik and Veldkamp (2014) highlight how within a Bayesian learning framework, where agents attempt to learn
the evolving distribution of GDP growth, uncertainty, skewness and therefore downside risk, are naturally
related to one another.

!0The fact that the quantile-based volatility measure is strongly correlated with the GARCH factor (> 0.9) and

macroeconomic uncertainty (> 0.8) provides reassurance that our procedure also reliably measures skewness.



co-movement with uncertainty, which moves countercyclically (see, e.g., Jurado et al., 2015).

3 Macroeconomic effects of skewness shocks

This section studies the macroeconomic effects of exogenous variation in expected skewness.
We add our measure of skewness to an otherwise standard VAR model. The empirical spec-
ification, the variables included, as well as the estimation approach largely follow Angeletos
et al. (2020). Within this set up, we study the relationship between revisions in expected
skewness and the main business cycle shock of these authors.

The baseline VAR spans the period 1960:Q1-2017:Q4 and contains the following vari-
ables: the expected skewness factor (see Figure 1), real GDP per capita, real investment per
capita, real consumption per capita, hours worked per person, unemployment rate, labour
share, effective federal funds rate, inflation, labour productivity (non-farm business sector),
and a measure of TFP.!! Details on these and other variables used in augmented models, can

be found in Appendix B. The VAR model has the following representation:

P
Yt = Z OpYt—p +ut, ur ~ N(0,%) ©)

p=1

where ©, V p = 1, ..., P are the matrices of VAR coefficients, and v, is a vector of reduced-
form disturbances, which are linear combinations of the underlying structural (orthogo-
nal) shocks u; = Apes. Ap is the matrix containing the contemporaneous responses, where
ApAj, = 3. Due to the relatively large dimension of the VAR model, we adopt a Bayesian
estimation approach and employ a Minnesota-type prior. The parameter that controls the
tightness of this prior is set to A = 2. This is a commonly used value in empirical studies
with US data and Section 4 shows that the results hold even for looser configurations. We
approximate the joint posterior distribution of the parameters using a Gibbs sampling algo-
rithm. Appendix C contains further details on the prior specification and the estimation of
the VAR model. We choose a baseline lag length of P = 2 and demonstrate robustness with
respect to this choice in Section 4.

To identify exogenous variation in expected skewness, our baseline approach imposes
zero restrictions on the matrix containing the contemporaneous responses. For this, Ay is
identified as the lower triangular matrix obtained from a Cholesky decomposition of .
Ordering our skewness measure first, this simple identification scheme provides us with

an intuitive interpretation of the identified shock as the revision in expected skewness, i.e.

""We use the original dataset made available by Angeletos et al. (2020). All key results hold when extending the
sample to 2019:Q4 (where the TFP series of Fernald (2014) ends) and using the latest (revised) data.



E¢[Skewyi1] — Ei—q [E¢[Skew;1]] where the expectation E;_; is conditional on the informa-
tion set spanned by the VAR. Section 4 shows that an alternative approach (Uhlig, 2003)
which identifies a shock that has the largest contribution to the variation of skewness over a
one-year horizon yields very similar results. This suggests that revisions in expected skew-
ness are also the main driver of skewness dynamics over the business cycle.

Figures 2 and 3 show the impulse response functions following a negative shock to ex-
pected skewness, i.e. a downward revision of expected skewness, and the corresponding
forecast error variance contributions, together with those of the MBC shock of Angeletos
et al. (2020). The latter is identified as an unemployment shock using the max-share ap-
proach of Uhlig (2003) and targeting four quarters in the time domain. Both shocks are iden-
tified within the same VAR specification. A revision in expected skewness generates busi-
ness cycle dynamics that are very similar to the business cycle anatomy documented in Angele-
tos et al. (2020). These dynamics reflect a sizeable, but relatively short-lived, co-movement
between GDP, investment, consumption, hours worked, and unemployment, without mean-
ingful movements in inflation and TFP. Table 2 shows that the (unconditional) correlation
between the MBC shock and our skewness shock is around 0.8. Angeletos et al. (2020) use
the business cycle anatomy to shed light on the transmission of macro shocks and, in particular,
on the drivers of the business cycle. Our evidence underlines that the key source of business
cycle variation in the data also accounts for short-term revisions in expected macroeconomic
asymmetries as measured by our expected skewness factor.

In Section 2 we have shown that our skewness factor is correlated with alternative mea-
sures of macroeconomic skewness. It is therefore natural to ask whether revisions of these
alternative measures also display a close connection with the business cycle anatomy and
whether introducing a broader measure of skewness through our principal component ap-
proach is crucial to obtaining this result. As a first exercise, we replace the expected skew-
ness factor with the individual expected skewness series of GDP growth shown in Figure
1(a). The results of this specification are shown in Figures D-2 and D-3 in Appendix D. In
spite of the strong correlation between aggregate macro skewness and the skewness of GDP
growth, revisions in the expected skewness of GDP growth do not generate meaningful co-
movement among the key macroeconomic variables. As a result, these revisions bear small
resemblance with the business cycle anatomy of Angeletos et al. (2020). The correlation be-
tween revisions in expected GDP growth skewness and the MBC shock is negligible (Table
2).
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Figure 2: Baseline model: Impulse response functions
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Note: The blue lines are the posterior mean responses to a negative one S.D. shock to expected skewness along
with the 68% highest density interval. The skewness shock is identified through a Cholesky decomposition. The
black lines are the responses to a one S.D. shock to unemployment, i.e. the MBC shock of Angeletos et al. (2020).
This shock is identified using the approach of Uhlig (2003). Sample period: 1960:Q1-2017:Q4.

Figure 3: Baseline model: Forecast error variance contributions
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Note: Posterior mean of the forecast error variance contributions along with the 68% highest density interval for

a shock to expected skewness (blue) and the MBC (unemployment) shock (black).
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In addition, we also compare our baseline results with the impact of revisions in expected
GDP growth skewness, when computed based on the approach of Adrian et al. (2019) as
shown in Figure 1(b). Figures D-4 and D-5 in Appendix D show the corresponding IRFs
and variance contributions. Revisions in this measure of expected growth skewness, which
can largely be interpreted as revisions associated with varying financial conditions, have a
much more short-lived impact on macroeconomic asymmetry. Moreover, despite producing
sizeable co-movement among all the key macroeconomic quantities, the IRFs display less
similarity with the business cycle anatomy. The correlation between revisions in this skew-
ness measure and the MBC shock remains well-below the baseline result (Table 2). This is
evidence that our expected skewness factor is a broader asymmetry measure and that this
additional information is important when analysing the impact of changing risks.

We also investigate whether revisions in financial market skewness produce dynamics
consistent with the ones reported above. To this end, we replace the skewness factor with the
option-implied market skewness series of Dew-Becker (2021) as well as the cross-sectional
stock return series of Salgado et al. (2019), both of which are shown in Figure 1(d). First,
Table 2 shows that revisions to the S&P 500 skewness series are negatively correlated with
the MBC shock. In fact, a downward revision in this skewness measure is associated with
an expansionary response of the main business cycle indicators, and non-negligible posi-
tive inflation. The IRFs and variance contributions are shown in Figures D-6 and D-7. This
result is in line with Dew-Becker (2021), who finds financial market skewness to move coun-
tercyclically. Second, when including the cross-sectional firm-level measure of stock return
skewness, we only find a minor correlation between revisions in this series and the MBC
shock (see Table 2, and Figures D-8 and D-9).12

To conclude this section, we also explore the impact of revisions in expected skewness
beyond the baseline set of macroeconomic variables through augmented specifications, in-
cluding selected financial variables (see Appendix E). We consider three augmented models
that, in addition to the baseline variables, include either i) excess returns and the term pre-
mium (Figures E-1 and E-2); ii) real house prices and real stock prices (Figures E-3 and E-4);
or iii) yields of 10-year government bonds (Figures E-5 and E-6). First, a downward revi-
sion of expected skewness decreases excess returns and increases the term premium, but
the variance contributions are modest. Second, a downward revision of expected skewness
decreases real stock prices, while the estimation uncertainty around the IRF of real house
prices is large. Similarly, while the variance contribution for house price dynamics is rela-

tively small, the skewness shock seems to explain a certain degree of stock price variation.

12We also tested VAR specifications with firm-level skewness using the option-implied skewness series of Dew-
Becker (2021). Shocks to this series only share a very low correlation with the MBC shock (results not reported).
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Table 2: Correlation of revisions in (exp.) skewness and MBC shock for different specifications

Baseline model MBC shock
Skew. shock Median 0.84
a) Exp. skewness factor
(1960:Q1-2017:Q4) 95% HDI 0.78 0.89
Other skewness measures MBC shock
Skew. shock Median 0.04

b) Exp. GDP skewness
(1960:Q1-2017:Q4) 95% HDI -0.03  0.11

Skew. shock Median 0.57

) Exp. GDP skewness (ABG)
(1971:Q1-2017:Q4) 95% HDI 0.48 0.66

Skew. shock Median -0.32

d) S&P 500 skewness
(1983:Q2-2017:Q4) 95% HDI -045 -0.19

. Skew. shock Median 0.14
e) Firm-level stock return skewness
(1964:Q1-2015:Q1) 95% HDI 0.02 0.26
Robustness checks MBC shock
Skew. shock Median 0.67

f Orthog. to GARCH volatilit
) THoE. 1o volatly (1960:Q1-2017:Q4) 95% HDI 056 076

Skew. shock Median 0.63

8) Orthog. to macro and financial unc.
(1960:Q1-2017:Q4) 95% HDI 056 076

Skew. shock Median 0.84

h) Orthog. to geopolitical risk
(1960:Q1-2017:Q4) 95% HDI 078  0.89

Skew. shock Median 0.73

i) Orthog. to excess bond premium
(1973:Q1-2017:Q4) 95% HDI 064 081

Skew. shock Median 0.84

j) Orthog. to total factor productivity
(1960:Q1-2017:Q4) 95% HDI 078  0.90

Skew. shock Median 0.83

k Orthog. to fiscal poli
) rthog. to fiscal policy (1960:Q1-2015:Q4) 95% HDI 077 0.89

Skew. shock Median 0.84

1 Orthog. to monetary polic
) & y poucy (1990:Q1-2016:Q4) 95% HDI 0.77 0.90

Note: Each row corresponds to a VAR specification and shows the correlation between downward revisions in
(expected) skewness and the (contractionary) MBC shock (Angeletos et al., 2020). We report the median correlation
across MCMC draws along with the 95% highest density interval (HDI). Revisions in (expected) skewness are
identified through a Cholesky decomposition by ordering skewness first if no alternative shock/variable is included
and second/third otherwise. Specification a) is our baseline model whereas in b), c), d) and e) the skewness factor
is replaced with the exp. skewness of GDP growth, the exp. skewness of GDP growth based on the approach
of Adrian et al. (2019), the option-implied skewness of the S&P 500 (quarterly avg.) computed by Dew-Becker
(2021), and the cross-sectional firm-level skewness of stock returns (quarterly avg.) computed by Salgado et al.
(2019), respectively. The alternative variables/shocks are: f) a data-rich measure of expected volatility based on a
GARCH(1,1); g) the macroeconomic and financial uncertainty indices of Jurado et al. (2015) and Ludvigson et al.
(2021); h) the (historical) geopolitical risk index (quarterly avg.) of Caldara and Iacoviello (2022); i) the excess
bond premium (EBP) (Gilchrist and Zakrajsek, 2012); j) the (annualised) growth rate of the utilisation-adjusted TFP
measure of Fernald (2014); k) the government spending shock of Ramey and Zubairy (2018); and 1) the monetary
policy surprises of Jarocinski and Karadi (2020).
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Finally, a downward revision of expected skewness decreases the 10-year government
bond yield and explains a sizeable share of its variation. Overall, a revision in expected
macroeconomic skewness appears to matter somewhat more for macroeconomic than finan-
cial variables, potentially suggesting a certain disconnect between the drivers of the business

cycle and those of asset prices, in line with the original evidence in Angeletos et al. (2020).

4 Robustness checks

This section discusses various checks to test the robustness of our baseline results along
different dimensions. The detailed results can be found in Appendix F. First, as mentioned
before, the baseline results are robust to a change in the identification scheme. In particular,
tobe closer to Angeletos et al. (2020), we also identify skewness shocks using the Uhlig (2003)
approach which maximises the explained share of skewness variation over four quarters in
the time domain. The corresponding results are shown in Figures F-1 and F-2, and are very
similar to the results based on the Cholesky identification.

Second, we augment our baseline specification with measures of macroeconomic volatil-
ity, uncertainty and geopolitical risk. Figures F-3 and F-4 present the effects of a revision in
expected skewness when controlling for aggregate expected volatility, achieved by ordering
this measure first in the Cholesky identification. The volatility measure is also based on a
data-rich approach to match the derivation of the skewness factor. Specifically, we estimate a
GARCH(1,1) model on each (de-meaned) data series of the McCracken and Ng (2020) dataset
and obtain the first principal component of all standardised expected volatility (conditional
standard deviation) series. We see that both the IRFs and the variance contributions in case
of a skewness shock remain very similar compared to the baseline model.

In a related exercise, we control for macro and financial uncertainty (Jurado et al., 2015;
Ludvigson et al., 2021). While the IRFs (Figure F-5) and variance contributions (Figure F-6)
change somewhat more in this case, they still remain similar to the baseline results. The
positive co-movement between output and uncertainty after a downward revision in ex-
pected skewness implies that the transmission of skewness revisions is clearly distinct from
the transmission of an uncertainty shock, which is generally characterised by a negative co-
movement between output and uncertainty. Table 2 shows that the correlation between the
skewness shock and the MBC shock remains sizeable. These results are largely consistent
with those in Forni et al. (2021), who show that the transmission of downside uncertainty
and skewness shocks is distinct from that of a standard (symmetric) uncertainty shock. They

find that asymmetry matters in the sense that uncertainty per se is not harmful, but that a
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widening of the left tail is what causes economic contractions.!> Moreover, to test whether
revisions in expected skewness relate to geopolitical risk, we augment our baseline specifi-
cation with the Geopolitical Risk Index of Caldara and Iacoviello (2022). Here, we find that
the IRFs (Figure F-7) and variance contributions (Figure F-8), as well as the correlation with
the MBC shock, remain nearly unchanged.

Third, we show that revisions in expected skewness are unrelated to other standard
shocks. We show robustness when controlling for: i) (credit-)risk shocks measured as the
exogenous variation in the Gilchrist and Zakrajsek (2012) excess bond premium (Figures
F-9 and F-10); ii) productivity shocks measured as the exogenous variation in the growth
rate of the Fernald (2014) TFP series (Figures F-11 and F-12)'4; iii) shocks to government
expenditure as identified in Ramey and Zubairy (2018) (Figures F-13 and F-14); and iv) mon-
etary policy shocks measured by the surprise series of Jarociniski and Karadi (2020), which is
purged of the central bank information component (Figures F-15 and F-16). In all cases the
IRFs and FVDs are similar to the baseline model and range from being nearly identical (TFP
and fiscal policy) to featuring some differences (EBP and monetary policy). The skewness
shock continues to be highly correlated with the MBC shock across specifications (Table 2).

Finally, we test the robustness with respect to the lag order in the VAR model and changes
to the Minnesota prior. Figures F-17 and F-18 present the results using a lag order of P = 4.
The IRFs and the error variance contributions remain very similar compared to the base-
line model. Figures F-19 and F-20 show that applying an even looser configuration of the

Minnesota prior (A = 10) leaves the baseline results essentially unchanged.

5 Conclusion and direction for future research

We construct a factor that summarises expected macroeconomic skewness. This factor is the
first principal component of the time-varying expected skewness indicators of a large num-
ber of macroeconomic series. Aggregate macroeconomic skewness is strongly procyclical,
co-moves with the expected GDP growth skewness series based on the approach of Adrian
et al. (2019), which conditions on macro-financial conditions, and is highly correlated with
the cross-sectional skewness of firm-level employment growth (Salgado et al., 2019). We then
document that the impulse responses of a set of macroeconomic variables associated with a
revision in expected skewness, and the corresponding variance contributions, closely match

the business cycle anatomy of Angeletos et al. (2020). Our baseline model produces an un-

13See also Segal et al. (2015), who distinguish between “good” and “bad” uncertainty, depending on its impact
on macroeconomic growth. In related work, Castelnuovo and Mori (2022) show that skewness can respond
endogenously to uncertainty shocks and amplify their impact on the business cycle.

“When including the growth rate of TFP, we exclude the TFP level series from the VAR specification.
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conditional correlation of around 0.8 between revisions in expected skewness and the main
business cycle shock identified in Angeletos et al. (2020). The results are robust to changes
in the identification scheme, controlling for macroeconomic volatility, uncertainty, and fre-
quently considered alternative shocks.

Our results highlight the importance of accounting for a procyclical variation in con-
ditional skewness of macroeconomic data. Variation in conditional skewness requires the
presence of non-linearities in the transmission of Gaussian shocks (see, e.g., Ferndndez-
Villaverde and Guerrén-Quintana, 2020), or can directly derive from skewed shocks hitting
the economy (as in Bekaert and Engstrom, 2017; Salgado et al., 2019). Angeletos and La’O
(2013) and Angeletos et al. (2018) highlight how waves of optimism and pessimism regard-
ing both firms” expected employment and production decisions as well as consumers’ beliefs
about future employment opportunities and income generate dynamics of output, employ-
ment, spending and prices akin to the business cycle patterns observed in the data. The
former could potentially arise from learning asymmetries in the presence of informational
frictions as in Veldkamp (2005). To the extent that fluctuations in sentiment or confidence are
associated with a reassessment of upside and downside risk over the cycle, and hence shifts
in expected skewness, our results provide a way of addressing the problem that “a direct,
empirical counterpart to the confidence shock is hard, if possible at all, to obtain” (Angele-
tos et al., 2018, p. 1692). Our results are also consistent with a relevant role for expectations
of rare disasters in explaining economic fluctuations (Rietz, 1988; Barro, 2006, 2009; Gabaix,
2008; Gourio, 2012; Wachter, 2013; Petrosky-Nadeau et al., 2018; Jorda et al., 2020). In par-
ticular, our results highlight the importance of allowing for time variation in the severity
(Gabaix, 2008) and/or probability of such rare disasters (see, e.g., Gourio, 2012; Wachter,
2013), which could generate sizeable variation in expected skewness.!> Most importantly,
our results provide useful insights for macroeconomic theories that search for shocks and
propagation mechanisms behind macroeconomic fluctuations. Any such theory will need to
be able to reproduce variations in aggregate skewness whose revisions are strongly affected

by the main source of business cycle fluctuations.

15See Giglio et al. (2021) for supporting evidence of the presence of time-varying disaster probabilities.
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Appendix A Monte Carlo exercise

This section addresses the concern that our two-step approach to constructing an aggregate
skewness factor could yield spurious results, i.e. indicate time-varying conditional skewness
in cases, where in fact there is none. For this, we conduct a Monte Carlo exercise and generate
500 datasets of size N = 70 and 7" = 250 from two different data generating processes (DGP),
both of which do not feature conditional skewness. The first DGP has a time-varying mean

and volatility, which both have a factor structure. Specifically, DGP 1 is defined as

Yig = g + et ey, eir ~N(0,1), (A-1)
Mit = )\,{ft + wit, (A-2)
hig = \'hy + vig, (A-3)

fo=p"fii1 + 2, z ~N(0,02), (A-4)

he = p"hi1 + e, uy ~N(0,02), (A-5)
Wit = prwit—1 + €ig, eir ~N(0,02)), (A-6)
Vit = PiVit—1+ Kig, Kig ~N(0,07 ;) (A-7)

The parameters of the DGP are set to: ol =0.9, ph = 0.98, py = 0.9, p¥ = 0.98, ol =1,
o =01,02, =1,and 02; = 0.1 Vi = 1,..., N. The factor loadings in the mean and log-
volatility equation, )\Zf and \?, are drawn from independent normal distributions with the
moments chosen such that the average variation explained of the mean and log-volatility of
the variables is 20% and 25%, respectively.

DGP 2 is similar to DGP 1 but includes the so-called leverage effect, i.e a negative con-
temporaneous correlation between the innovations to the mean and volatility factors, as
well as the innovations to the idiosyncratic mean and volatility components. Under this
assumption, it is well-known that the model remains conditionally Gaussian, but features
unconditional left-skewness (e.g. Omori et al., 2007). In particular, in this case, we assume
that z; and u; follow a multivariate normal distribution with correlation p, ,, = —0.9. A
similar assumption is introduced for the correlation between ¢; ; and ;¢ is chosen randomly
from a uniform distribution [0, —0.9] for each variablei =1, ..., N.

For each simulated dataset and both DGPs, we estimate the skewness factor as outlined
in Section 2. Since the scale of the skewness factor is not identified, and since in this case we
are interested in assessing how far the retrieved factor is from the zero line, we normalise
the factor so that its standard deviation matches the mean value of the standard deviation
of the individual skewness series in the dataset. Figure A-1 presents the distribution of the

estimated skewness factors across the Monte Carlo samples. The results provide evidence
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for the strong performance of the model and show that our two-step approach to construct
the skewness factor does not capture “spurious skewness”. In particular, since both DGPs
do not feature conditional skewness, the distribution of the estimated factors across Monte

Carlo samples is centred around the zero line with only limited dispersion.
Figure A-1: Results of Monte Carlo simulation

(a) DGP 1: (Un-)conditionally Gaussian

1
051 7
) ——————————————
-05r 7
_1 1 1 1 1
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(b) DGP 2: Cond. Gaussian with uncond. skew
1
051 |
O e Ot
-05r 7
_1 1 1 1 1
0 50 100 150 200 250

Note: The largest shaded area corresponds to the 90% confidence interval, with shades corresponding to increas-
ing probability ranges of 10%, 20%; ..., 90%.
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Appendix C VAR model and prior choice

This appendix contains additional details on the VAR model used in the main part of the pa-
per and the prior specification employed in the Bayesian estimation of this model. Since the
presentation here is relatively brief and does not outline every step of the Bayesian treatment
of a VAR model, we refer to standard references for further details (e.g. Koop and Korobilis,
2010; Chan, 2020). The starting point of our empirical analysis is a vector autoregressive
model of order P denoted as VAR(P)

P
Yt = Z Opyt—p + uz, ur ~N(0,%), (C1)

p=1

where u; is a N x 1 vector of reduced-form errors that is normally distributed with zero mean

and covariance matrix X. The regression-equation representation of this system is
Y =X0+U, (C-2)

where Y = [yp11, ..., yr]isa N x T'matrix, X = Y_; isa (IVP) x T matrix containing the h-th
lagof Y, © = [©1,...,0p]isa N x (NP) matrix, and U = [up41,...,ur] isa N x T matrix of
disturbances.

The Bayesian estimation of VAR models has become standard in empirical macroeco-
nomics. Specifically, we use a Minnesota-type prior (Doan et al., 1984; Litterman, 1986). It is
assumed that the prior distribution of the VAR parameters has a Normal-Wishart conjugate

form
0|Z NN(907Z®QO)> ENIW(UOWSO)» (C's)

where 0 is obtained by stacking the columns of ©. In contrast to Litterman (1986), the co-
variance matrix ¥ in the prior described in Equation (C-3) is not replaced by an estimated
and thus known (diagonal) counterpart. Therefore, sampling from the conditional posterior
distributions described below requires Gibbs sampling (see also Mumtaz and Zanetti, 2012).
Our results are based on 25,000 draws and we discard the initial 5,000 draws as burn-in. The
(Minnesota) prior moments of ¢ are given by

E[(@p)vla]] = { s Var[(@p)aivj] = AU?/U?W (C'4)

0 otherwise

and, as outlined in Banibura et al. (2010), they can be constructed using the following Tp
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dummy observations

diag(d101,...,0NON)

Jp®diag(0'1,...,0']\])

Yp = . and Xp = ) (C-5)

where Jp = diag(1,2, ..., P) and diag denotes the diagonal matrix. The prior moments in
Equation (C-3) are functions of Yp and Xp, ©g = Yp X, (Xp X)) ™1, Qo = (XpXp)~L, So =
(Yp —©0Xp)(Yp — ©9Xp) and vy = Tp — N P. Finally, the hyper-parameter \ controls the
tightness of the prior and our baseline choice is A = 2.

Since the normal-inverse Wishart prior is conjugate, the conditional posterior distribu-

tion of this model is also normal-inverse Wishart (Kadiyala and Karlsson, 1997)
OIS, Y ~N (0,2 29Q), S|Y ~IW(v,S), (C-6)

where variables with a bar denote the parameters of the posterior distribution. Defining ©
and U as the OLS estimates from Equation (C-2), the parameters of the conditional posterior
distribution can be computed as © = (Q;'S) + Y X')(Q;' + X'X)~L, O = (' + X'X)7},
o =wv+T,and S = OXX'®' + 090,10 + Sy + UU' — 60 1€'. Lastly, as in Mumtaz and
Zanetti (2012), the values of the persistence parameter J; and the error standard deviation o;
of the AR(1) model are obtained from its OLS estimation.
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Appendix D Additional results

Skewness factor based on a smaller subset of variables

Figure D-1: Skewness factors based on different datasets

15 ; . , . , ;

' , Corr. =0.95

1967 1977 1986 1996 2006 2016

|— - - Exp. skew factor (SW) —— Exp. skew factor (full) ‘

Note: This figure shows the skewness factor based on the full McCracken and Ng (2020) dataset and an alterna-
tive skewness factor based on a subset of variables similar to those used in Stock and Watson (2012). The scale

of the latter is adjusted such that it is identical for both factors.

Correlation of skewness factor and volatility/uncertainty measures

Table D-1: Correlation of skewness factor and different volatility /uncertainty measures

‘ PC (skew) PC(X) PC(X?) PC (Ps5-P3;5) PC(GARCH) Macro unc. Fin. unc.

PC (skew) 1.00 - - - - - -
PC (X) 0.79 1.00 - - - - -
PC (X?) -0.48 -0.50 1.00 - - - -
PC (P75-Pas) -0.80 -0.78 0.80 1.00 - - -
PC (GARCH) -0.72 -0.53 0.80 0.92 1.00 - -
Macro unc. -0.72 -0.63 0.63 0.84 0.77 1.00 -
Fin. unc. -0.46 -0.48 0.45 0.60 0.52 0.58 1.00

Note: This table contains correlations of the exp. skewness factor PC (skew) and different measures of volatility and uncertainty.
PC (X), PC (X?), PC (P75-P2s), and PC (GARCH) are, respectively, the first principal component of the McCracken and Ng (2020)
dataset, the first principal component of the squared observations (Gorodnichenko and Ng, 2017), the first principal component
of the expected interquartile ranges, and the first principal component of the expected individual GARCH standard deviations.
Macro unc. and Fin. unc. are the macroeconomic and financial uncertainty indices developed in Jurado et al. (2015) and
Ludvigson et al. (2021).
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Results of baseline model with GDP skewness

Figure D-2: Impulse response functions
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Note: Posterior mean responses to a negative one S.D. shock to expected GDP skewness along with the 68%

highest density interval. Identification through Cholesky decomposition. Sample period: 1960:Q1-2017:Q4.

Figure D-3: Forecast error variance contributions
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Note: Posterior mean of the forecast error variance contributions along with the 68% highest density interval.
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Results of baseline model with GDP skewness (Adrian et al., 2019)

Figure D-4: Impulse response functions
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Note: Posterior mean responses to a negative one S.D. shock to expected GDP skewness (Adrian et al., 2019)
along with the 68% highest density interval. Identification through Cholesky decomposition. Sample period:

1971:Q1-2017:Q4.

Figure D-5: Forecast error variance contributions
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Note: Posterior mean of the forecast error variance contributions along with the 68% highest density interval.
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Results of baseline model with S&P 500 skewness (Dew-Becker, 2021)

Figure D-6: Impulse response functions
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Note: Posterior mean responses to a negative one S.D. shock to option-implied S&P 500 skewness (Dew-Becker,
2021) along with the 68% highest density interval. Identification through Cholesky decomposition. Sample
period: 1983:Q2-2017:Q4.

Figure D-7: Forecast error variance contributions
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Note: Posterior mean of the forecast error variance contributions along with the 68% highest density interval.
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Results of baseline model with firm-level return skewness (Salgado et al., 2019)

Figure D-8: Impulse response functions
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Note: Posterior mean responses to a negative one S.D. shock to the cross-sectional firm-level skewness of stock

returns (Salgado et al., 2019) along with the 68% highest density interval. Identification through Cholesky de-
composition. Sample period: 1964:Q1-2015:Q1.

Figure D-9: Forecast error variance contributions
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Note: Posterior mean of the forecast error variance contributions along with the 68% highest density interval.
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Appendix E Augmented models including financial variables

Results of model augmented with excess returns and term premium

Figure E-1: Impulse response functions
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Note: Posterior mean responses to a negative one S.D. shock to expected skewness along with the 68% highest

density interval. Identification through Cholesky decomposition. Sample period: 1961:Q3-2017:Q4.

Figure E-2: Forecast error variance contributions
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Note: Posterior mean of the forecast error variance contributions along with the 68% highest density interval.
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Results of model augmented with house prices and stock prices

Figure E-3: Impulse response functions
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Note: Posterior mean responses to a negative one S.D. shock to expected skewness along with the 68% highest

density interval. Identification through Cholesky decomposition. Sample period: 1975:Q1-2017:Q4.

Figure E-4: Forecast error variance contributions
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Note: Posterior mean of the forecast error variance contributions along with the 68% highest density interval.



Results of model augmented with government bond yields

Figure E-5: Impulse response functions

Skewness GDP Investment 0 Consumption 02 Hours worked
0 | 0 0
0 -0.2
-1 -0.2 -0.2
1 -0.4
2 0.4
-0.6
-2 -0.4 -0.6
0 10 20 0 10 20 0 10 20 0 10 20 0 10 20
0 4Unemployment 0.2 Labour share Policy rate Inflation Labour productivity
: ' 0.2
0
0.2 0 0
-0.05 0
-0.02
-0.2
0 0 01
-0.2
0.2 0.4 -0.04
0 10 20 0 10 20 0 10 20 0 10 20 0 10 20
02 TFP Gov. bond yield
' 0
0 -0.1
0.2 0.2
0 10 20 0 10 20

Note: Posterior mean responses to a negative one S.D. shock to expected skewness along with the 68% highest

density interval. Identification through Cholesky decomposition. Sample period: 1960:Q1-2017:Q4.

Figure E-6: Forecast error variance contributions
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Note: Posterior mean of the forecast error variance contributions along with the 68% highest density interval.
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Appendix F Robustness checks

Results of baseline model with max-share identification approach

Figure F-1: Impulse response functions

Skewness GDP Investment Consumption
0
0 -0.2 0
0.4 -1
-1
0.6 -2
2 -0.5
0 10 20 0 10 20 0 10 20 0 10 20
Hours worked Unemployment Labour share Policy rate
0.2
0 0.3 0
0.2 0-? 0
04 0. -0.05
0 -0.2
-0.6 0.1 -0.1
0 10 20 0 10 20 0 10 20 0 10 20
Inflation Labour productivity TFP
0.02 01 .
0 ? 0
-0.02 -0.1 01
-0.04 -0.2 -0.2
-0.3
0 10 20 0 10 20 0 10 20

Note: Posterior mean responses to a negative one S.D. shock to expected skewness along with the 68% highest
density interval. Identification through max-share approach (Uhlig, 2003). Sample period: 1960:Q1-2017:Q4.

Figure F-2: Forecast error variance contributions
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Note: Posterior mean of the forecast error variance contributions along with the 68% highest density interval.
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Model results controlling for (GARCH) volatility

Figure F-3: Impulse response functions
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Note: Posterior mean responses to a negative one S.D. shock to expected skewness along with the 68% highest
density interval. Identification through Cholesky decomposition. Sample period: 1960:Q1-2017:Q4.

Figure F-4: Forecast error variance contributions

GARCH volatility Skewness GDP Investment
0 100 50 50

I
r
-

0
0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80
Consumption 20 Hours worked 50 Unemployment 20 Labour share

20

—
o
n
o o
—_
o

0 0 0
0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80

Policy rate Inflation Labour productivity TFP
10

10

5

1
4
1

0 0
0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80

Note: Posterior mean of the forecast error variance contributions along with the 68% highest density interval.
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Model results controlling for macroeconomic and financial uncertainty

Figure F-5: Impulse response functions

« Mdcro unc. Findncial unc. ; Skewness 05 GDP Investment
: 1
0 0
0
10 -10 0 0
-1
-20 4
-20 -0.5 2
0 10 20 0 10 20 0 10 20 0 10 20 0 10 20
Consumption 05 Hours worked Unemployment 0.2 Labour share Policy rate
02 . 0.2 . 0
0
0 0 0 0.1
-0.2
-0.2 -0.5 -0.2 -0.2
0 10 20 0 10 20 0 10 20 0 10 20 0 10 20
Inflation Labour productivity0 5 TFP
0 0.2
-0.02
-0.04
-0.2 -0.2
0 10 20 0 10 20 0 10 20

Note: Posterior mean responses to a negative one S.D. shock to expected skewness along with the 68% highest

density interval. Identification through Cholesky decomposition. Sample period: 1960:Q3-2017:Q4.

Figure F-6: Forecast error variance contributions
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Note: Posterior mean of the forecast error variance contributions along with the 68% highest density interval.



Model results controlling for geopolitical risk

Figure F-7: Impulse response functions
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Note: Posterior mean responses to a negative one S.D. shock to expected skewness along with the 68% highest

density interval. Identification through Cholesky decomposition. Sample period: 1960:Q1-2017:Q4.
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Figure F-8: Forecast error variance contributions
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Note: Posterior mean of the forecast error variance contributions along with the 68% highest density interval.
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Model results controlling for excess bond premium

Figure F-9: Impulse response functions
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Note: Posterior mean responses to a negative one S.D. shock to expected skewness along with the 68% highest

density interval. Identification through Cholesky decomposition. Sample period: 1973:Q1-2017:Q4.

Figure F-10: Forecast error variance contributions
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Note: Posterior mean of the forecast error variance contributions along with the 68% highest density interval.
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Model results controlling for TFP growth

Figure F-11: Impulse response functions

TFP growth Skewness GDP Investment

o o
(=2 \C S
'
- o
o
NN = o

-0.5
-2 -1
0 10 20 0 10 20 0 10 20 0 10 20
Consumption Hours worked Unemployment Labour share
of—————— 02 04 04
0 0.2 0
0.2 0.2 -0.1
-0.4 0 -0.2
0.4 -0.6 -0.3
0 10 20 0 10 20 0 10 20 0 10 20
Policy rate Inflation Labour productivity
0 0 0.2
-0.05 -0.02 0
01 -0.04
_ -0.2
045 0.06

0 10 20 0 10 20 0 10

N
o

Note: Posterior mean responses to a negative one S.D. shock to expected skewness along with the 68% highest

density interval. Identification through Cholesky decomposition. Sample period: 1960:Q1-2017:Q4.

Figure F-12: Forecast error variance contributions
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Note: Posterior mean of the forecast error variance contributions along with the 68% highest density interval.



Model results controlling for fiscal policy shocks

Figure F-13: Impulse response functions
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Note: Posterior mean responses to a negative one S.D. shock to expected skewness along with the 68% highest
density interval. Identification through Cholesky decomposition. Sample period: 1960:Q1-2015:0Q4.

Figure F-14: Forecast error variance contributions
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Note: Posterior mean of the forecast error variance contributions along with the 68% highest density interval.
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Model results controlling for monetary policy shocks

Figure F-15: Impulse response functions
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Note: Posterior mean responses to a negative one S.D. shock to expected skewness along with the 68% highest
density interval. Identification through Cholesky decomposition. Sample period: 1990:Q1-2016:0Q4.

Figure F-16: Forecast error variance contributions
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Note: Posterior mean of the forecast error variance contributions along with the 68% highest density interval.
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Results of baseline model with lag order P = 4

Figure F-17: Impulse response functions
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Note: Posterior mean responses to a negative one S.D. shock to expected skewness along with the 68% highest

density interval. Identification through Cholesky decomposition. Sample period: 1960:Q1-2017:Q4.

Figure F-18: Forecast error variance contributions
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Note: Posterior mean of the forecast error variance contributions along with the 68% highest density interval.
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Results of baseline model with looser prior configuration in VAR (\ = 10)

Figure F-19: Impulse response functions
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Note: Posterior mean responses to a negative one S.D. shock to expected skewness along with the 68% highest

density interval. Identification through Cholesky decomposition. Sample period: 1960:Q1-2017:Q4.

Figure F-20: Forecast error variance contributions
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Note: Posterior mean of the forecast error variance contributions along with the 68% highest density interval.
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