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1 Introduction

We learn from asset pricing theory that the prices or values of claims are linked to the un-
certainty of payments. To value an asset, we need to account for the ‘risk’ of its payments 
(Cochrane, 2010), such as credit risk or market liquidity. In recent years, after the imple-
mentation of unconventional monetary policies with asset purchases, we have witnessed that 
liquidity is playing a larger role in bond price dynamics, including bonds of large issuers like 
the German government. Smaller bond issuers, such as the EFSF or other supranational 
issuers have also been a¤ected by worsening liquidity conditions. Disentangling credit and 
liquidity e¤ects in yields is a key challenge. Investors search for yield pickup to increase 
return on the portfolio, and therefore they buy bonds with a liquidity premium at lower 
prices (Monfort and Renne, 2013). At the same time, they can arbitrage the relative liquidity 
premium between bonds with similar credit ratings (Longsta¤ 2009).

In this paper, we aim to o¤er a model of EFSF term structure for investors to help 
manage their bond portfolios taking account of liquidity. Furthermore, our model can be 
extended to other similar size issuers such as the Kreditanstalt für Wiederaufbau (KFW) 
or the European Investment bank (EIB). The European Financial Stability Facility (EFSF) 
was set up in June 2010 as a temporary crisis resolution mechanism, and in October 2012 its 
tasks were taken over by the European Stability Mechanism (ESM), a permanent institution 
with a new capital-based structure. The EFSF and ESM have disbursed e295 billion to …ve 
countries in the form of loans …nanced by bond issuance. Although the size of EFSF/
ESM stock of debt makes them one of the biggest supranational non-bank issuers 
in the Economic and Monetary Union (EMU), it is still not enough to match the 
secondary market liquidity of a large liquid sovereign bond issuer.

We look at market liquidity in terms of bid-o¤er spreads, and we …nd that EFSF liquidity 
is only supported in some maturities. Regarding the credit risk of EFSF bonds, although the 
rating is high, it depends on a guarantee based on the capital keys of AAA rated sovereign 
issuers of the euro area, with the exception of France that acts as a marginal guarantor, 
having lost its AAA rating in 2012.

Policy action such as quantitative easing (QE) is another factor that determines the bond 
price, as QE adjusts the price level of the yield curve. If there is an increase in the bond’s 
term premium related to credit concerns by market investors, the solvency of the debtors 
would be improved by the policy action. As a result, the term premium would narrow and the 
bond’s price rise, all other things being equal. Moreover, investors’ con…dence would improve 
too, and it may trigger higher bond turnover, thus smaller liquidity premia as a result. Policy 
actions such as minimum holdings of central banks reserves and market microstructure can
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also a¤ect bonds’ liquidity premia. For example, the way liquidity proceeds from ECB asset

purchases are reinvested in a speci…c country determines whether banks choose to re-invest

them short term in low-risk domestic assets such as Bund repos, which often yield lower

returns, or at the ECB deposit facility, thus making excess liquidity holdings at the central

bank more attractive (Baldo et al, 2017, Krishnamurthy 2021).

Investors need a price to value bonds of new issuers, as was the case for the EFSF in

2012, or issuers that do not often trade. Therefore, having a liquid benchmark index is

also important for bond pricing. For the euro area, the German Bund, is generally chosen,

as it is a safe liquid asset. However, quantitative easing has also a¤ected the liquidity of

German bonds. We see more negative asset swap spreads, as an indicator of liquidity costs.

These considerations led us to choose the swap curve as a benchmark, thanks to its large

market sizes (Remolona and Wooldridge (2003)), and also because it is where hedging and

positioning activity is used extensively (Dalla Fontana et al. 2019). In addition, swaps

belong to the money market, so it is excluded from dynamics typical of bonds trading in

capital market.

This paper’s contribution is threefold. Firstly, it is the …rst study …tting a no-arbitrage

model to the EFSF yield curve and o¤ers a full decomposition of the observed historical

EFSF yields into the expectation and term premia component. We …nd that the term

premia on the EFSF curve has increased sharply during the 2011-2012 crisis and that they

have also been on the rise in the more recent months. Secondly, when the term structure

model is estimated jointly with the swap and spot curves, and with the assumption that the

latter carries an additional premium stemming from an additional pricing factor, regression

analysis shows that such an additional premium and pricing factor are related to liquidity

and credit conditions. Furthermore, in a comparative study based on German and French

government bond yields, we …nd that the liquidity/credit factor moves largely with a measure

of liquidity that relates directly to ECB monetary policy (excess liquidity) and that credit

is only signi…cant for Germany and EFSF, though it is in relation to France’s credit risk.

Thirdly, this paper introduces a methodological contribution consisting of a novel approach

to pricing the yield curves of small and medium-sized issuers. This is achieved by including

a benchmark liquid curve in the model and specifying an additional factor that is ex-ante

attributed to liquidity/credit.

The paper is organised as follows. Section 2 describes the no-arbitrage model used in the

paper, Section 3 describes the data, Section 4 illustrates the decomposition of EFSF yields

in expectations and term premia, Section 5 discusses the liquidity/credit pricing factor.

Section 6 concludes. Further technical details are provided in the Appendix.
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2 Model

Since the seminal work of Vasicek (1977), a large amount of research has focused on Gaussian

A¢ne Term Structure Models (GATSM). Prominent contributions in this tradition include

Du¢e and Kan (1996), Dai and Singleton (2000), Du¤ee (2002), and Ang and Piazzesi

(2003).

Let yt denote a vector of yields on a set of zero-coupon bonds of maturity � = 1; :::; N .

In the Du¢e and Kan (1996) canonical term structure model, the yields are driven by an

n-dimensional vector of unobservable risk factors St:

yt = A
Q
S +B

Q
S St +�y"

y
t ; (1)

�St = K
P
0S +K

P
1SSt�1 +�S"

P
t ; (2)

where AQS and B
Q
S are N � 1 and N �n coe¢cient matrices, KP

0S is a n� 1 vector, KP
1S is a

n�nmatrix, and �y and �S are lower triangular Cholesky factor matrices. The disturbances
"yt , "

P
t are i:i:d: N(0; I) vector processes and are mutually independent.

Equations (10)-(11) constitute a factor model in which the yields depend linearly on

the factors St through the intercept vector A
Q
S and the factor loadings B

Q
S . These equa-

tions do not make explicit the role of the no-arbitrage assumption. Such an assumption

further implies that AQS and B
Q
S are (highly) nonlinear functions of certain deep parameters

�QS ={K
Q
0S ,K

Q
1S ,�S ,�0S ,�1S}, i.e. A

Q
S = A(�

Q
S ) and B

Q
S = B(�QS ). Speci…cally, the ele-

ments in any generic row � of AQS and B
Q
S must obey a set of (highly) nonlinear restrictions

ensuring that there are no arbitrage opportunities:

AQS (�) = �A�=�; A�+1 = A� +KQ0
0SB� + 0:5B

0
��S�

0
SB� � �0S ; (3)

BQS (�) = �B�=�; B�+1 = B� +KQ0
1SB� � �1S ; (4)

with initial conditions A0 = B0 = 0. The deep parameters �
Q
S describe the evolution of the

state variables under the so-called equivalent martingale measure:

�St = K
Q
0S +K

Q
1SSt�1 +�S"

Q
t ; (5)

as well as the dynamics of the instantaneous risk free rate rt:

rt = �0S + �1SSt; (6)

where KQ
0S is a n � 1 vector, K

Q
1S is a n � n matrix, �0S a scalar, �1S a n � 1 vector, and

"Qt is an i:i:d: N(0; I) vector process. With no loss of generality, we use the normalisation

�0S = 0 and �1S =1 a n� 1 vector of ones.
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Here Q and P denote the risk neutral and physical measures of probability. Under the
P measure agents’ risk aversion implies that prices need to be predictable to some extent,
producing the expected returns necessary to compensate investors for bearing risks. Under

this measure, the states follow the dynamics described by (2). Under the Q probability

measure, prices are a martingale, which resembles a hypothetical situation in which investors

are risk-neutral. Under this measure, the states behave according to (5). The existence of

the equivalent martingale measure Q is a necessary and su¢cient condition of the absence

of arbitrage. Conversion from the P to the Q measure can be achieved using a variable

transformation described by a Radon-Nikodym derivative that, together with the risk-free

rate (6), forms the pricing kernel.1

It is important to distinguish the assumption of absence of arbitrage and the additional

speci…cation restrictions inherent in a GATSM. In particular, there are other assumptions

which are not required to guarantee the absence of arbitrage, but are needed to estimate the

model or to compute quantities of interest. For example, the use of a vector autoregressive

model of order 1, VAR(1), for the law of motion of the factors under the P measure.2 Simi-
larly, no arbitrage only requires the existence of a pricing kernel, but it does not determine

the form of such kernel. A log-normal form is typically chosen, which provides tractability.3

These additional assumptions can improve e¢ciency, but can lead to misspeci…cation.

1 In particular, under the Q measure the price of an asset Vt that does not pay any dividends at time

t+1 satis…es Vt = EQ
t [exp(�rt)Vt+1], where rt is the short-term rate. Under the P measure the price is Vt =

EP
t [(�t+1=�t) exp(�rt)Vt+1], where �t+1 is the Radon-Nikodym derivative. The term (�t+1=�t) exp(�rt) is

referred to as the stochastic discount factor (or pricing kernel).
2Du¤ee (2011b) shows that it is entirely possible for the factors to follow richer dynamics in the physical

measure than in the risk-neutral measure and that this translates to the presence of hidden factors which

-while not useful in explaining the cross-section of yields- can help explain their dynamics. Similarly, Joslin,

Priebsch, and Singleton (2012) show that a VAR representation (under the physical measure) including

measures of real economic activity and in‡ation captures better the dynamics of the term structure. In this

paper, we illustrate the proposed approach using the simpler framework o¤ered by yields-only models, but

our approach can be naturally extended to models allowing for macroeconomic factors.
3 In particular it is assumed that ln(�t+1=�t) = �0:5�0t�t � �0t"Pt , which implies the stochastic discount

factor is log-normal with conditional mean �rt �0:5�0t�t and conditional variance �0t�t. Further assuming
a linear price of risk �t = �0 + �1St, the relation between the coe¢cients of the factor dynamics under the

two measures is: KQ
jS = K

P
jS � �S�j ; j = 0; 1: Once can also add a constraint on the variabillity of prices

of risk, for example costraining their Sharpe Ratios as in Du¤ee (2010):
q
�0t�

�1
S ��1S �t < c.
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2.1 A joint model of swap and spot rates

In the empirical application, the N -dimensional yt vector of yields is partitioned into Nswap

swap rates yswapt and Nspot spot rates yspott :

yt =

"
yswapt

yspott

#
. (7)

In the data set we use, the …rst 2 principal components explain 99.79% of the total variability

in the swap curve and the …rst 3 principal components explain 99.59% of the total variability

in the joint swap and spot curve. Based on this …nding, we set n = 3, i.e. three factors

are driving yt, and we further assume that while the short-term spot rate responds to all

the three factors, the short-term swap rate only depends on the …rst two factors. This is

implemented by augmenting the model with an equation for the instantaneous swap rate:

rswapt = �0S + �1SSt; (8)

where �1S is a 3-dimensional vector with the last element equal to 0. This implies that:

rspott � rswapt = S
(3)
t ; (9)

i.e. the di¤erence between the spot and swap rate is given by the third factor S(3)t .4 It also

implies that the entire swap curve will not depend on the third factor. As we shall see, the

third factor prices the speci…c risks associated with the spot rates, which in our application

are EFSF bonds.

2.2 Estimation

Traditional no arbitrage term structure models entail a high level of nonlinearity - evident

in the restrictions (3) and (4) - that makes the estimation extremely di¢cult and often

unreliable (Du¤ee (2011a,b), Du¤ee and Stanton (2012), Hamilton and Wu (2012)). Some

recent literature has successfully addressed this issue. Hamilton and Wu (2012) propose

a strategy to estimate such models using a series of transformations and OLS estimation.

Christensen, Diebold and Rudebusch (2011) proposed a no-arbitrage term structure model

based on the Nelson and Siegel (1987) exponential framework. In this paper, we use the

representation proposed by Joslin, Singleton and Zhu (2011), which is equivalent to the

canonical representation of Du¢e and Kan (1996), but parametrised in such a way that

estimation is considerably simpli…ed.

4To be precise, it is rspott � rswapt = �1SS
(3)
t , but recall we are using a normalisation in which the

autoregressive coe¢cients on the short-term rates are one, hence �1S = 1.
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Joslin, Singleton and Zhu (2011) (JSZ) derive the following equivalent representation for

equations (1) and (2):

yt = A
Q
P +B

Q
PPt +�y"

y
t ; (10)

�Pt = K
P
0P +K

P
1PPt�1 +�P "

P
t : (11)

In (10) and (11), the factors Pt = W ~yt are portfolios composed of N yields priced without

error ~yt = A
Q
S +B

Q
S St, and �P is the Cholesky factor of their conditional variance. Details

of the transformation leading from (1)-(2) to (10)-(11) can be found in the appendix. The

advantage of the JSZ rotation stems from the fact that the least-squares projection of the

observable factors P ot = Wyt onto their lagged values will nearly recover the maximum

likelihood estimates of KP
0P and K

P
1P to the extent that P

o
t � Pt. Moreover, the intercepts

AQP = A(�
Q
P ) and the loadings B

Q
P = B(�

Q
P ) depend on a smaller set of deep parameters

�QP = fkQ1; �Q;�P g, where �Q are the (ordered) eigenvalues of K
Q
1S and k

Q
1 is the …rst

element of KQ
0S (the remaining elements of this vector being zero).

Clearly, the model at hand is a linear Gaussian state space system. Equations (10) and

(11) (or, in the equivalent canonical representation, equations (1) and (2)) are respectively

the transition and measurement equation. Equations (5) and (6) are implicitly embedded in

the model through the restrictions (3) and (4) on the factor loadings: it is these restrictions

that impose the absence of arbitrage. Estimation can be performed via maximum likelihood.

3 Data

All data is at monthly frequency, with a monthly data point equal to the average of the daily

data points in any given month. The swap curve yswapt is based on the 6-month Euribor swap

rates, ranging from April 2000 to December 2020. The EFSF zero coupon equivalent rates

are provided by the ESM and are obtained using Svensson’s method, and range between

April 2012 to December 2020. The spot curves yspott of Germany and France are sourced

from Bloomberg and are available from April 2000 to December 2020.

We select the most liquid maturities and include a swap rate with very short maturity as

a proxy for the risk-free rate. Analysis of the …tting showed that a minimum of 6 maturities

are needed per curve, and that the swap rates for Germany and France can be estimated with

a 3-month rate, but this is not the case for the EFSF curve. The swap curves for Germany

and France can be estimated up to the 20-year with a small …tting error, but that is not

the case for the EFSF, as the long-term rate a¤ects the yield decomposition assumption

of the no-arbitrage model (relationship between short rate and long rate). Based on these
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considerations, we chose maturities of 1, 2, 3, 5, 7 and 10 years for the spot curves (EFSF,

Germany, France) and 3-months and 1, 2, 3, 4, 5, 7 and 10 years for the swap curve.

Since the EFSF created signi…cant market presence only in 2012, yields for the period

2000-2012 are not available. While estimation using a shorter sample is possible, the time

series dimension of the EFSF yields is too limited to provide reliable results, and for this

reason, we backcast the EFSF data to April 2000, using an average of the zero-coupon

equivalent yields for the countries entering the EFSF guarantee, with weights given by the

respective proportions of capital assigned to each country 5. Speci…cally, the EFSF data set

between April 2000 and March 2012 has been reconstructed using a ‘synthetic’ curve based

on the capital keys by shareholder:6

yEFSFt=2000=4:2012=3 =
�5i=1wiy

c
t

�5i=1wi

We only used the …rst 4 shareholders with at least AA rating in order of share size (Ger-

many, France, Spain, The Netherlands) with the following weights wi: France=20.24; Ger-

many=26.96; Spain= 11.8; Netherlands=5.7, which represents nearly 80% of the total cap-

ital.7 The data for the curves Netherlands and Spain are from Bloomberg. The rationale

behind this choice is that the EFSF rates tend to co-move with the core EMU countries.8

Figure 1 shows the historical curves by issuers, and Figure 2 shows the spreads between

the swap and the spot rates. Our synthetic instrument shows a behaviour as expected

before 2012. Between 2000 and 2009 the 10-year swap spread (Figure 2 and Table 4-

timeline of events) was narrow like those Germany and France. The tight swap spreads for

most countries are in line with a period of positive economic growth for the euro area, when

in‡ation was also close or on target at 2%. After 2009 the …nancial and sovereign debt crises

marked a regime change, especially for the sovereign issuers with credit risk. In 2012-13 a

wider swap spread is also justi…ed by the initial illiquidity of EFSF bond market.

5The capital keys are published on the ECB website.
6See http://esm.europa.eu
7From 2010 onwards, we took away Spain when the country lost the triple-A ratings, in line with the

over-guarantees assumption.
8The correlation between the EFSF, Germany, and France curves is between 95.6% and 99.9%, depending

on maturity. In the sample for which the actual EFSF is available, the synthetic and actual EFSF have a

correlation between 96.7% and 98.8%, depending on maturity. Moody’s upgraded EFSF’s rating to AAA in

June 2022 and Fitch a¢rmed EFSF’s rating to AA in July 2022.
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4 Decomposing the curve

4.1 Model implied yields and in sample …t

Estimation of the model provides the model-implied yields:

~yt = A
Q
S +B

Q
S St; (12)

which depend on parameters belonging to the risk neutral measure Q. These are model-
based estimates of the actual yields, and are illustrated in Figure 3.

The di¤erence between actual and model based yields:

yt(�)� ~yt(� ) = "̂t(� ); (13)

is the …tting error. A straightforward measure of in-sample …t of the model is simply given

by the root mean squared errors:

RMSE(�) =

r
1

T
�Tt=1"̂

2
t (�);

which are reported in Table 1. The small …tting errors suggest that while EFSF rates are

potentially problematic because of reduced liquidity at the shortest and longest maturities,

the swap curve can be exploited as a (liquid) benchmark for pricing.

4.2 Instantaneous risk-free rate

The no-arbitrage model retrieves the instantaneous risk-free rates via equation (6), which we

report in Figure 4. The short rate observations are aligned until 2007 and within the ECB

‘corridor’ (di¤erence between deposit facility and marginal lending facility), which con…rms

our conjecture that swaps are the best proxy of the natural rate of interest, as they stay

within the ECB corridor. In 2008, the swap rate rises due to the …nancial crisis. After

2008, the swap spread tightens again, all market rates fall after 2015, but only the swap

rate stays within the ECB corridor. The historical behaviour suggests that short maturity

swap rates have been closer to the ECB monetary policy stance than bond rates and they

are less sensitive to regime changes.

We believe that the reason for this di¤erence between swap and bonds is mainly due

to the key characteristic of bonds as a cash-like instrument, which can be bought and sold

immediately. Swaps do not require cash to enter because the notional is not exchanged.

Yet, investors can take a directional position on future interest rates using swaps, the same

as they would do with bonds. The purchase may require …nancing. If the investor holds

cash, like asset managers, they may need to hold cash until the right opportunity to buy

8



comes. In a negative interest rate environment this also carries a certain cost. Thus, either

way, regardless of the type of investor, liquidity bears a cost and this cost is re‡ected in the

bond yield, but not in the swap rate.

Other factors may a¤ect the bond yield and not the swap. Bonds can be used as collateral

that can be used by investors in the repo market or by banks to borrow money from the

ECB. This lowers the …nancing cost, hence the cost of liquidity that is priced in the bond

yield. Swaps and bonds have a di¤erent credit rating: one is re‡ective of banking risk

and the other of sovereign risk. This may also a¤ect the swap spread; we argue that it

is minimally a¤ected by credit factors, as swaps are mostly collateralised by highly rated

bonds or cash. Eventually, it is the cost of holding collateral or cash to hedge the credit risk

in a swap position that a¤ects the spread. Once again, it is the liquidity cost to be priced

in the swap spread and it is cash related to collateralisation. Finally, bonds can be used as

HQLAs (high quality liquid assets) to meet capital requirements by regulators. Hence, this

is another characteristic that precludes bonds and swaps from being substitutes for each

other.

4.3 Expectations

The model implied yields can be further decomposed into an expectation component and a

term premium. To compute the expectation component, we …rst compute the conditional

expectations of the factors:

Et[St+� ] = �S + eK1S� � (St � �S); (14)

where �S = �(KP
1S)

�1KP
0S .

9 Then using (6) it is possible to derive the conditional expecta-

tions of the short-term rate:

Et[rt+� ] = �0S + �1SEt[St+� ]: (15)

Finally, application of the expectations hypothesis gives the Expectations Hyphothesis (EH)

consistent swap yields:

y�t (�) =
1

�

�X

j=1

Et[rt+� ]: (16)

Note that this expectation is computed under the physical measure P.10 Importantly, in the
case of the swap curve the expectation is based only on 2 factors, i.e. �0S = 0; �1S = [1 1 0].

9Note that eK
P
1S� � (KP

1S + I)
� since ln(KP

1S + I)
� = � ln(I +KP

1S) � �KP
1S .

10The same expectation under the Q measure would almost coincide with ~yt(�), the (small) di¤erence

consisting in a Jensen’s inequality term. This happens because under the Q measure, the EH holds and there
are no term premia.
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Instead, the expected spot curve is based on 3 factors , i.e. �0S = 0; �1S = [1 1 1].

Speci…cally, we have that:

y�t = y
�swap
t =

1

�

�X

j=1

EtS1t+� +
1

�

�X

j=1

EtS2t+� (17)

and

y�spott = y�t +
1

�

�X

j=1

EtS3t+� : (18)

In what follows, we take the stand that y�t = y
�swap
t represents a measure of the EH-consistent

yields, while the term 1
�

�X

j=1

EtS3t+� represents an additional expectation component that

arises on the spot rates.11

4.4 Term premia

The term premia are the di¤erence between the model-implied yields ~yt(�) and the EH-

consistent yields:12

TTP spott (� ) = ~yspott (�)� y�t (� ); (19)

The premia depend on parameters belonging to both the Q and the P measures. Note that
in expression (19) we use the EH-consistent swap expected yields, not the expected spot

yields, as a reference point.

Solving for the model implied yields ~yspott (�) and recalling from (13) that they di¤er

from the observed yields by a measurement error, we have:

yspott (�) = y�t + TTP
spot
t (� ) + "̂spott (�): (20)

The expression above makes clear that yspott (� ) can be decomposed in the EH-consistent

expected swap rates y�t and a term premium. The term premia for the EFSF curve, for all

maturities, are shown in Figure 5. Figure 6 shows the term premia for all the curves, at

the 10-year maturity. A decomposition of yields into expectations and term premia can be

found in Figure 7 and Figure 8.

The term premia change over time and are of course increase with maturity. Among all

issuers considered, the lowest TTP spott premium is Germany’s, as one would expect from

the safe haven. Both term premia and expectations decrease over time in all curves, with

expectations leveling out at negative yield level after 2015.
11Refer also to corporate bond pricing literature, where defaultable bonds are priced by discounting future

cash ‡ows using a default - and liquid - adjusted short rate. Contributions in this tradition include Du¢e-

Sinleton (1999), Longsta¤ et al (2005), Driessen (2005).
12See equation (4) in Dai and Singleton (2002).
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5 Pricing factors

The estimated St factors are shown in Figure 9, together with a naive data-based measure

of level and slope of the curve. Speci…cally, the level is approximated with the 10-year

yield while the slope is measured with the di¤erence between the 10-year and 1-year yield.

The last panel in the …gure shows the third factor S(3)t , which coincides with the di¤erence

between the instantaneous risk-free spot and swap rates, as described in equation (9). This

factor is particularly relevant as its cumulated forecasts represents the di¤erence between

the EH-consistent curves:
1

�

�X

j=1

EtS3t+� = y
�spot
t � y�t (21)

which is illustrated in …gure (10). The …gure shows the factor S3t (in bold) together with

the spreads y�t � y
�spot
t for di¤erent maturities.

5.1 Determinants of the third factor

The factor S3t determines a wedge between the EH-consistent rates of the spot and the swap

curve. A time series plot of the third factor for the EFSF, Germany, and France yield curve

is displayed in Figure (11). The EFSF’s third factor moves similar to the one of Germany,

while France’s third factor peaks in 2012.

In this section we show that this factor can be interpreted as a liquidity/credit factor.

Speci…cally, we estimate the following regression model:

S3t = c+ �1S3t�1 + �2�CDSt + �3�XLt + �4V STOXXt + �5Dt + "t;

where c is an intercept, �CDSt is the change in credit default swaps rates, �XLt is the

change in a measure of excess liquidity,13 V STOXXt is the Euro STOXX 50 area volatility

index by DB and Goldman Price, Dt is a set of dummy variables picking up extreme events

in the dates August 2007 and November 2011, and "t is a white noise disturbance.14 We

estimate the model using OLS and correcting the standard error for heteroschedasticity via

the White (1980) robust estimator. Results are displayed in Table 2.

For the sample starting in June 2011, time series of bid-ask spreads are also available,

allowing to run the regression:

S3t = c+ �1S3t�1 + �2�CDSt + �3�XLt + �4V STOXXt + �5Dt + �6BAt + "t;

13Speci…cally, XLt is the ECB eurozone excess liquidity de…ned as deposits at the deposit facility net of

the recourse to the marginal lending facility.
14As robustness test, the results are unchanged if we include the other two factors as explanatory variables

in the regressions.
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where BAt is the bid-ask spread. Bid-asks are calculated by the ESM using MTS high

frequency data. They are de…ned as the average of best-bid ask spreads relative to the best

mid price at the same time, minute by minute within a particular day, provided that the

spreads are below threshold spread. EFSF data not used due to limited availability. We

estimate the model using OLS and correcting the standard error for heteroschedasticity via

the White (1980) robust estimator. Results are displayed in Table 3.

Overall, our results provide mainly evidence for the importance of excess liquidity in

reducing the third factor. These regression results show that the S3t factor captures relative

liquidity conditions of swap/bond markets. In Table 2, excess liquidity is signi…cant for all

the speci…cations. CDS is only signi…cant for Germany and in one speci…cation for EFSF

related to French CDS. After 2011, the excess liquidity is an important determinant only

for the EFSF (see Table 3). Germany’s S3t and EFSF S3t moves with the risk sentiment

as it is a safe haven asset, while the factor is linked to France’s credit default risk. We also

…nd that our results are not signi…cantly altered by controlling for the volatility index.

6 Conclusions

In this paper, we …tted a no-arbitrage a¢ne term structure model to the EFSF yield curve,

and o¤ered an historical decomposition of the observed historical EFSF yields into the

expectation and term premia component. We have also …tted France and Germany govern-

ment yield curves, which showed the robustness of the model to both liquid and non-liquid

markets.

We found that the term premia on the EFSF curve increased sharply during the 2011-

2012 crisis, and that it has also been on the rise at the end of 2020. Both term premia

and expectations decrease over time in all curves, with expectations leveling out at negative

yield level after 2015.

We also found that the relatively more illiquid curves – and speci…cally the one of

supranational bonds – do show a larger liquidity/credit factor. Regression analysis con…rmed

starkly that the additional factor is related to liquidity and credit conditions.

Finally, the paper introduced a novel approach to price the yield curves of small issuers

and / or illiquid markets. This is achieved by including in the model a benchmark liquid

curve, and specifying an additional factor which is ex-ante attributed to liquidity.

12



Appendix A: derivation of the JSZ representation

To make this paper self-contained, we derive here the JSZ representation of the GATSM. A

more rigorous and detailed description can be found in JSZ. The evolution of n risk factors

(a n-dimensional state vector) is given by:

�St = K
P
0S +K

P
1SSt�1 +�S"

P
t (22)

�St = K
Q
0S +K

Q
1SSt�1 +�S"

Q
t (23)

rt = �0S + �1SSt; (24)

where Q and P denote the risk neutral and physical measures, rt is the short-term rate,

�S is the Cholesky factor of the conditional variance of the states and the errors are i.i.d.

Gaussian random variables. The model-implied yield on a zero-coupon bond of maturity �

is an a¢ne function of the state St (Du¢e and Kan (1996)):

eyt(� ) = A� (�QS ) +B� (�
Q
S )St (25)

where �QS = fK
Q
0S ; K

Q
1S ;�S ; �0S ; �1Sg and the functions A� (�

Q
S ) and B� (�

Q
S ) are computed

recursively and satisfy a set of Riccati equations:

A�+1 = A� +K
Q0
0SB� + 0:5B

0
��S�

0
SB� � �0S

B�+1 = B� +K
Q0
1SB� � �1S

with initial conditions A0 = B0 = 0. Here the use of the symbol ~ highlights that the

yields eyt are assumed to be perfectly priced by the model, i.e. (25) does not contain any
measurement error.

A preliminary result (Joslin, 2007) is that (22), (23), and (24) can be re-parametrised

as follows:

KQ
0S = (kQ1; 0; :::; 0); (26)

KQ
1S = J(�Q) (real Jordan form), (27)

�S = lower triangular,

�0S = 0;

�1S = 1 (vector of ones):

The �Q are the (ordered) eigenvalues of KQ
1S : Note that in this case knowledge of k

Q
1; �

Q;�S

will be su¢cient to compute the loadings so we can write A(�QS ) = A(kQ1; �
Q;�S) and

B(�QS ) = B(�
Q).

13



Now consider n linear combinations of N yields (that is, portfolios), and label them

Pt = W eyt. JSZ show that i) the state vector St which is in general unobservable can be

replaced by the observable portfolios Pt by means of an invariant transformation, and ii) the

Qdistribution of the observable portfolios Pt is entirely characterized by �
Q
P = fkQ1; �

Q;�P g
where �P is the Cholesky factor of the conditional variance of Pt:15

To derive the JSZ rotation we start from getting a measurement equation in terms of

the states Pt. Rewrite the measurement equation (25) by stacking by columns the equations

for di¤erent yields:

eyt
N�1

= A(�QS )
N�1

+B(�QS )
N�n

St
n�1

(28)

with eyt = [eyt(� 1); :::; eyt(�N )]0; A(�QS ) = [A�1 ; :::; A�N ]
0; and B(�QS ) = [B0�1 ; :::; B

0
�N ]

0. By

premultiplying (28) by W the measurement equation can be stated as:

Pt = AW +B0WSt; (29)

where

AW =WA(�QS ) (30)

and

B0W =WB(�QS ): (31)

From (29) we can get an expression for St:

St = B
0�1
W (Pt �AW ); (32)

and substituting (32) into the measurement equation (28) gives:

eyt = Ap +BpPt (33)

with:

Ap = (I �B(�QS )B
0�1
W W )A(�QS ); (34)

Bp = B(�QS )B
0�1
W ; (35)

while using (29) to compute the conditional variance of Pt gives:

�P�
0
P = B

0
W�S�

0
SBW : (36)

15The parameter k1 under Q-stationarity (and if the multiplicity of the …rst eigenvalue �Q1 is m1 = 1)

is related to the risk neutral long run mean of the short rate as follows: kQ1 = ��Q1 rQ1. As a result, it is
possible to de…ne equivalently �QP = r

Q
1; �

Q;�P .
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Note that since B(�QS ) = B(�
Q) and BW =WB(�QS ), the matrix �S can be derived under

knowledge of �Q and �P , and in turn knowledge of kQ1; �
Q;�S yields the coe¢cients in

A(�QS ) = A(kQ1; �
Q;�S). It follows that knowledge of �QP = kQ1; �

Q;�P allows one to

compute Ap and Bp. Turning to the equations (22), (23), and (24), applying (29) to both

sides and then substituting St�1 using (32) we obtain the JSZ canonical form corresponding

to the measurement equation (33):

�Pt = K
P
0P +K

P
1PPt�1 +�P "

P
t (37)

�Pt = K
Q
0P +K

Q
1PPt�1 +�P "

Q
t (38)

rt = �0P + �1PPt: (39)

The relation between the two representations is given by:

KQ
1P = B0WK

Q
1SB

0�1
W ; (40)

KQ
0P = B0WK

Q
0S �K

Q
1PAW ; (41)

�1P = B�1W i; (42)

�0P = �AW �1P ; (43)

KP
1P = B0WK

P
1SB

0�1
W ; (44)

KP
0P = B0WK

P
0S �KP

1PAW ; (45)

where KQ
1S = J(�

Q) and KQ
0S = k

Q
1em1 with em1 a vector of zeros except for the entry m1

which is one (m1 being the multiplicity of the …rst eigenvalue �
Q
1 ).

Now assume the portfolios (and therefore the yields) are measured with error. In this

case we de…ne the observed yields as yt = eyt +�y"yt . The de…nition of the portfolios stays
the same: Pt =W eyt as before, but now these di¤er from the observed portfolios P ot =Wyt

so one needs to …lter out the unobserved states Pt. The state space system is:

�Pt = K
P
0P +K

P
1PPt�1 +�P "

P
t (46)

yt = Ap +BpPt +�y"
y
t : (47)

The objects KP
0P and KP

1P can be concentrated out in a preliminary OLS step, Ap and

Bp are parameterized by the vector of coe¢cients �
Q
P = f�Q; kQ1;�P g via (34), (35) and

(36). Hence, the model is fully parameterized by:

� = (�Q; kQ1;�P ;�y); (48)

Considering that reasonable initial conditions for �P and �y are readily available, the size

of the parameter set to be estimated is dramatically reduced.
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Tables and …gures

Table 1: RMSEs for di¤erent maturities

maturity (years) RMSE (basis points)

0.25 0.0028

1 9.2313

2 3.63122

3 0.0118797

4 0.885371

5 5.24329e-05

7 3.33382

10 8.67598

1 9.94581

2 2.09054e-05

3 5.16343

5 12.2225

7 18.3568

10 24.8387

average 6.8786
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Table 2: determinants of the third factor.

S3t = c+ �1S3t�1 + �2�CDSt + �3�XLt + �4V STOXXt + �5Dt + "t

EFSF EFSF France Germany

c -0.00037** -0.00036** -0.00058*** -0.000295***

S3t�1 0.9450*** 0.9482*** 0.9857*** 0.9771***

�CDSt (FR) -0.9191* - -0.2603 -

�CDSt (DE) - -1.0008 - -1.4242*

�XLt -0.0093*** -0.0093*** -0.0074** -0.0055*

V STOXXt 1.0246 1.5406** 2.5333** -0.5445

Dt (2007 : 8) -0.00142*** -0.00143*** -0.000692*** -0.00038***

Dt (2011 : 11) 0.00163*** 0.00158*** -0.004286*** -0.000151

R2 (adj) 0.941 0.885 0.881 0.955

Note: here c is an intercept, �CDSt is the change in credit default swaps rates, �XLt is the

change in a measure of excess liquidity, V STOXXt is the Euro STOXX 50 area volatility

index by DB and Goldman Price, Dt are dummy variables picking up extreme events in the

dates August 2007 and November 2011. Sample size: 213.
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Table 3: determinants of the third factor, sample starting 2011:6

S3t = c+ �1S3t�1 + �2�CDSt + �3�XLt + �4V STOXXt + �5Dt + �6BAt + "t

EFSF EFSF France Germany

c -0.000374 -0.000809* -0.000958* 0.000277

S3t�1 0.865928*** 0.877338*** 0.879943*** 0.970804***

�CDSt (FR) -1.243307 - -0.378832 -

�CDSt (DE) - -1.405896 - -1.182595

�XLt -0.008857** -0.010634** -0.007429 0.001790

V STOXXt 0.697189 0.522964 1.979787 -0.569060

Dt (2011 : 11) 0.001354** 0.001394** -0.003785*** -0.000147

BAt (FR) -9.77E-06 - 2.56E-05 -

BAt (DE) - 3.24E-05 - -2.14E-05

R2 0.814 0.812 0.675 0.930

Note: here c is an intercept, �CDSt is the change in credit default swaps rates, �XLt

is the change in a measure of excess liquidity, V STOXXt is the Euro STOXX 50 area

volatility index by DB and Goldman Price, Dt a dummy variable picking up extreme event

in November 2011, and BAt is the bid-ask spread. Sample size: 115.
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Table 4: timeline of events

Sep-01 U.S. terrorist attacks

Jan-04 Committee of European Banking Supervisors

Mar-08 Collapse of Bear Stearns

Sep-08 Lehman Brothers bankruptcy

Apr-10 Greece requests …nancial assistance

May-10 First programme approved for Greece

May-10 Start of the SMP

June-10 EFSF created

Nov-10 Ireland …nancial assistance

May-11 Portugal …nancial assistance

Oct-11 Dexia resolution

Dec-11 3Y- LTROS announced

Feb-12 EFSF programme for Greece

Mar-12 ECB suspends eligibility of Greek bonds used as collateral in repo operations

Apr-12 Bankia resolution

Jul-12 Mario Draghi’s "Whatever it takes" speech

Aug-12 Outright Monetary Transactions (OMT) annoucement

Oct-12 ESM operating

Dec-12 ESM assistance to Spain

Apr-13 ESM …nancial assistance to Cyprus

Jul-13 ECB forward guidance

Dec-13 Spain and Ireland: End of …nancial assistance

Jun-14 GovC decision TLTROS

Sep-14 GovC decision ABS, covered bonds

Jun-14 Portugal: End of …nancial assistance

Jan-15 GovC decision, EAPP

Jun-15 Greece fails to repay IMF loan

Aug-15 ESM Board of Governors approves ESM programme for Greece

Dec-15 Extension of QE

Jan-16 EMIR regulation on CCPs

Mar-16 Increase pace of APP

Mar-16 Cyprus: End of …nancial assistance

Dec-16 ECB decreases pace of APP

Jan-17 Short-term debt relief measures for Greece

Jun-18 Medium-term measures of Greece

Sep-18 ECB resumes Cyprus asset purchases

Aug-18 Greece: end of ESM …nancial assistance programme

Mar-20 ECB announces more QE for pandemic
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Figure 1: Data. Swap curve and spot curves for EFSF, France, and Germany. Units are
expressed in levels, so for example 0.06 = 6%. Source: Data obtained from Bloomberg Data
Services.
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Figure 2: Spreads between swap and spot rates. Units are basis points. Source: Authors’
calculation using data obtained from Bloomberg Data Services.
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Figure 3: Actual and …tted yields, swap-EFSF curve. Units are expressed in levels, so
for example 0.06 = 6%. Authors’ calculation using data obtained from Bloomberg Data
Services.
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Figure 4: Instantaneous risk-free rates for alternative curves. Units are expressed in levels,
so for example 0.06 = 6%. Source: Authors’ calculation using data obtained from Bloomberg
Data Services.
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Figure 5: Term premia - EFSF curve. The term premium is the one shown in (19). Units
are expressed in levels, so for example 0.03 = 3%. Authors’ calculation using data obtained
from Bloomberg Data Services.
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Figure 6: Term premia on the 10-year yield. The term premium is the one shown in (19).
Units are expressed in levels, so for example 0.03 = 3%. Source: Authors’ calculation using
data obtained from Bloomberg Data Services.
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Figure 7: Decomposition of EFSF yields. The …gure illustrates the decomposition shown
in (20). The term premium is the one shown in (19). Units are expressed in levels, so
for example 0.06 = 6%. Source: Authors’ calculation using data obtained from Bloomberg
Data Services.

29



2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

0

0.01

0.02

0.03

0.04

0.05

0.06
10-year, swap

Ysp o t

TPsp o t

Y*sw ap

Yhat sp o t=TPsp o t+Y*sw ap

2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

0

0.01

0.02

0.03

0.04

0.05

10-year, EFSF

Ysp o t

TPsp o t

Y*swap

Yhat sp o t =TPspo t+Y*swap

2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

0

0.01

0.02

0.03

0.04

0.05

10-year, France

Ysp o t

TPsp o t

Y*swap

Yhat sp o t =TPsp o t +Y*sw ap

2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

0

0.01

0.02

0.03

0.04

0.05

10-year, Germany

Ysp o t

TPsp o t

Y*swap

Yhat sp o t=TPsp o t+Y*swap

Figure 8: Decompositions for di¤erent curves. The …gure illustrates the decomposition
shown in (20). The term premium is the one shown in (19). Units are expressed in levels, so
for example 0.06 = 6%. Source: Authors’ calculation using data obtained from Bloomberg
Data Services.
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Figure 9: Estimated St latent factors, swap-EFSF curve. Units are expressed in levels, so
for example 0.06 = 6%. The data-based level is de…ned as the 10-year yield. The data-based
slope is de…ned as the di¤erence between the 10-year and 1-year yield. The data-based third
factor is de…ned by the di¤erence between the 3 month swap rate and the 1-year EFSF yield.
Source: Authors’ calculation using data obtained from Bloomberg Data Services.
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Figure 10: Spreads between EFSF and swap term premia. The bold line is the third pricing
factor. Units are in basis points. Source: Authors’ calculation using data obtained from
Bloomberg Data Services.
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Figure 11: Third factor for EFSF, France, and Germany. Units are in basis points. Source:
Authors’ calculation using data obtained from Bloomberg Data Services.
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