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Abstract

In this paper, we propose a simple maximum likelihood regression estimator that outper-
forms Least Squares in terms of e�ciency and mean square error for a large number of
skewed and/or heavy tailed error distributions.
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1 Introduction

Ordinary Least Squares (LS) is the simplest and most commonly used estimator for linear re-
gression analysis. Under a set of hypotheses, called Gauss-Markov assumptions, this estimator
is the most e�cient linear unbiased estimator. With heavy-tailed or asymmetrical distribution
of the error term, LS is no longer the most e�cient estimator and is outperformed by other
maximum likelihood estimators when the error distribution is known (or well approximated).
How to improve e�ciency when the error distribution is not known beforehand is an old debate
(Mandelbrot, 1963; Fama, 1965; Rachev, 2003).1

In this paper, we propose a simple maximum likelihood regression estimator that out-
performs LS in terms of e�ciency for a large number of skewed and/or heavy tailed error
distributions.

1Corresponding address: Lorenzo Ricci, Université libre de Bruxelles, Av. Roosevelt, 50 - CP139,
B-1050 Brussels, Belgium E-mail: lricci@ulb.ac.be (L. Ricci), vverardi@ulb.ac.be (V. Verardi) and
vermande@ulb.ac.be (C. Vermandele). Vincenzo Verardi is an associate researcher at FNRS and gratefully
acknowledges their �nancial support.

2European Stability Mechanism and Université libre de Bruxelles - ECARES
3Université Namur - CRED
4Université libre de Bruxelles
1In this context, outliers are considered a part of the error distribution.
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The underlying idea is to estimate the regression parameters by the maximum likelihood
method, assuming that the error distribution belongs to the family of the very �exible Tukey
distributions which provide a good adjustment of a large number of commonly used unimodal
distributions. We perform a Monte Carlo study to assess the performance of this estimator
and �nd that it behaves better than LS in terms of e�ciency (and Mean Squared Error) as
soon as the error distribution departs from normality. Consequently, this estimator also leads
to more precise predictions under these circumstances.

This paper is structured as follows. Section 2 recalls some characteristics of Tukey's distri-
butions, presents the regression model and our estimation procedure. Section 3 is devoted to
the Monte Carlo study. Section 4 is dedicated to the empiric evaluation. In the �nal section
(Section 5) the conclusions are drawn.

2 Methodology

2.1 Tukey ggg-and-hhh distribution

In the late 1970s, Tukey (1977) introduced a new family of distributions, called Tukey g-and-
h distributions, based on elementary transformations of the standard normal. Let Z be a
random variable from the standard normal distribution N(0, 1). De�ne the random variable
Y through the transformation

Y = ξ + ωτg,h(Z) (1)

where ξ ∈ R, ω > 0, and

τg,h(z) =
1

g
(egz − 1) ehz

2/2 (2)

with g ̸= 0 and h ∈ R such that τg,h(z) is a one-to-one monotone function of z ∈ R. Then Y
is said to have a Tukey's g-and-h distribution with location parameter (median) ξ and scale
parameter ω:

Y ∼ Tg,h(ξ, ω).

Parameter g controls the direction and the degree of skewness, while h controls the tail thick-
ness (or elongation). The family of Tg,h(ξ, ω)-distributions is very �exible and approximates
well many commonly used distributions (Martinez and Iglewicz, 1984; MacGillivray, 1992;
Jiménez and Viswanathan, 2011).

As shown among others by Xu and Genton (2015), the density function of the Tg,h(0, 1)-
distributed random variable T = τg,h(Z) takes the form:

fT |g,h(t) =
ϕ
(
τ−1
g,h(t)

)
τ ′g,h

(
τ−1
g,h(t)

) , t ∈ R, (3)

where ϕ(�) is the standard normal density function, and τ−1
g,h(�) and τ ′g,h(�) are the inverse

and �rst derivative of the function τg,h(�), respectively. Hence, the density function of the
Tg,h(ξ, ω)-distributed random variable Y = ξ + ωT can be written as:

fY |g,h,ξ,ω(y) = fT |g,h

(
y − ξ

ω

)
1

ω
, y ∈ R. (4)
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Suppose now that we have a random sample {y1, . . . , yn} of n realizations of Y . Then the

maximum likelihood estimator θ̂θθML of the parameters vector θθθ = (ξ, ω, g, h)T is obtained by
maximizing the log-likelihood function

Ln(θθθ) =

n∑
i=1

log fY |θθθ(yi)

=

n∑
i=1

[
log ϕ

(
τ−1
g,h

(
yi − ξ

ω

))
− logω − log τ ′g,h

(
τ−1
g,h

(
yi − ξ

ω

))]
. (5)

It is well known that under mild regularity conditions, θ̂θθML is e�cient. Unfortunately, since
τ−1
g,h(�) does not have a closed form, numerically evaluating Ln(θθθ) can be computationally
expensive, especially when the sample size is large. For this reason, the existing literature
has largely been focused on searching for alternative estimators. One of these alternatives
consists of estimating θθθ by the values of the parameters that minimize the discrepancy between
the empirical and theoretical order statistics of Y , that is, that minimize the following loss
function:

n∑
i=1

[
y(i) −

{
ξ + ωτg,h(z(i))

}]2
(6)

where y(i) is the i-th order statistic2 among y1, . . . , yn, and z(i) = Φ−1
(

i
n+1

)
is the quantile

of order i
n+1 of the standard normal distribution.3 This estimation technique is a variant of

the quantiles least squares method proposed by Xu et al. (2014).

2.2 Flexible maximum likelihood estimation

Consider linear regression model

yi = xTi βββ + εi, i = 1, . . . , n, (7)

where xTi is the row vector of explanatory variables and βββ is the column vector of regression
parameters. Let us assume that the disturbances εi are independent and identically distributed
according to a Tg,h(0, ω)-distribution, with g, h, and ω unknown. In this context, we have to
estimate two parameters vectors: βββ and θθθ∗ = (0, ω, g, h)T.

The log-likelihood function takes the form:

Ln(βββ,θθθ
∗) =

n∑
i=1

[
log ϕ

(
τ−1
g,h

(
yi − xTi βββ

ω

))
− logω − log τ ′g,h

(
τ−1
g,h

(
yi − xTi βββ

ω

))]
. (8)

However, the joint estimation of βββ and θθθ∗ is a quite complex computational problem. We
therefore split the problem into two simpler ones that are solved iteratively similarly to what
is done in Expectation Maximization algorithms.

The procedure is the following:

1. Take the L1-estimate β̂ββL1
as initial estimate of the regression parameters vector βββ: β̂ββ =

β̂ββL1
.

2i is the rank of y(i) among the n realizations of Y .
3Φ(�) denotes the cumulative distribution function of the standard normal distribution.
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2. Determine the residuals ε̂i = yi − xTi β̂ββ (i = 1, . . . , n) and estimate the vector of Tukey's

parameters θθθ∗ by the vector θ̂θθ
∗
= (0, ω̂, ĝ, ĥ)T that minimizes the loss function

n∑
i=1

[
ε̂(i) − ωτg,h(z(i))

]2
where ε̂(i) is the i-th order statistic among ε̂1, . . . , ε̂n, and z(i) = Φ−1

(
i

n+1

)
.

3. Determine the maximum likelihood estimator of βββ assuming that the errors εi (i =

1, . . . , n) in model (7) are distributed according to a T
ĝ,ĥ

(0, ω̂)-distribution: β̂ββ is now
the value of the regression parameters vector that minimizes the log-likelihood function

(8) in which the unknown vector θθθ∗ is replaced by its estimate θ̂θθ
∗
obtained in step 2.

For this step, since the log-likelihood function does not have an explicit expression, we
approximate it by an explicitly computable function proposed by Xu and Genton (2015).

4. Iterate 2 and 3 till the convergence.

3 Simulation Study

In this Section, we describe a simulation study performed to assess the performance of the
�exible maximum likelihood (FML) estimator proposed above. The data yi (i = 1, . . . , n) are
generated according to the following linear model:

y = β0 + β1x1 + ε

where β0 and β1 are set equal to one, and x1 is normally distributed with zero mean and
unit variance. The error term ε is generated from: (i) a N(0, 1)-distribution; (ii) a Student
distribution with 5 degrees of freedom, t(5); (iii) a Laplace(0,2)-distribution; (iv) a shifted
(zero mean) centered Chi-square distribution with 5 degrees of freedom, χ2

c(5).
Three di�erent sample sizes � n = 100, n = 500, and n = 1000 � are considered. The

number B of replications is equal to 10,000. The FML estimate is computed iteratively as
explained in Section 2. The iterations stop when the absolute relative change in the estimate
is smaller than 10−4 with a maximum number of iterations set to 100.

Table 1 shows the gain in e�ciency for β0 (and β1) of FML with respect to the ordinary
least squares (LS), for the di�erent error distributions and sample sizes. The gain in e�ciency
is de�ned as 100− (RMSE)× 100, where the RMSE (Relative Mean Squared Error) is de�ned
as the ratio of the mean squared error of β0 (and β1) of FML over that of LS. As can be
seen in table 1, the e�ciency gain increases substantially when the error term departs signif-
icantly from normality. For the Gaussian distribution, the problem of low e�ciency for β1 is
reduced when the sample size increases. For symmetric but heavy tailed distributions, the
gain is substantial for both small (n = 100) and large sample size (n = 1000). The gain in
e�ciency is even larger for skewed distributions such as shifted centered χ2

c(5). For the sake
of completeness, bias and MSE of the FML estimators β̂0 and β̂1 are presented in Table 2.
Since in the simulations the mean (and not the median) of the distribution of the errors is set
to zero, the intercept estimated with FML is biased. To have a fair comparison between LS
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and FML (in terms of MSE) for skewed distributions, we correct the constant of FML (after
convergence) by adding mean residual to it.4

Finally, Figure 1 shows the gain in e�ciency when the error terms are generated from
various Tukey g-and-h distributions for a grid of g and h values. A darker grey corresponds
to a higher gain in e�ciency with respect to LS. The equi-e�ciency contours are represented
by solid lines while the dashed line is the zero gain equi-e�ciency contour. The grid of g
spans −0.60 to 0.60 and the grid of h spans −0.05 to 0.60. We locate in the graph the four
distributions considered in the previous simulations. The results are shown for a sample of
100 observations. Results are comparable for larger n and available upon request. When g
and h increase, the e�ciency of FML increases with respect to LS. Overall, FML tends to
outperform LS as soon as the distribution of the innovation term becomes notably di�erent
from a normal distribution.

Table 1: Gain in e�ciency in %

n = 100 n = 500 n = 1000

ε ∼ N(0, 1)
β0 −0.219 0.011 −0.008
β1 −18.214 −2.134 −0.680

ε ∼ t(5)
β0 0.106 0.046 0.001
β1 11.250 13.178 12.550

ε ∼ Laplace(0, 2)
β0 0.045 0.056 0.029
β1 19.570 19.257 18.386

ε ∼ χ2
c(5)

β0 0.226 0.129 0.037
β1 28.241 38.094 38.915

Table 2: Bias and MSE of FML

n = 100 n = 500 n = 1000

ε ∼ N(0, 1)
β0

Bias −0.002 −0.001 0.000
MSE 0.010 0.002 0.001

β1
Bias 0.003 0.000 0.000
MSE 0.012 0.002 0.001

ε ∼ t(5)
β0

Bias 0.001 0.000 −0.001
MSE 0.017 0.003 0.002

β1
Bias 0.001 −0.001 0.000
MSE 0.015 0.003 0.001

ε ∼ Laplace(0, 2)
β0

Bias 0.000 0.000 0.000
MSE 0.005 0.001 0.001

β1
Bias 0.000 0.000 0.000
MSE 0.004 0.001 0.000

ε ∼ χ2
c(5)

β0
Bias 0.002 0.002 −0.002
MSE 0.100 0.020 0.010

β1
Bias 0.002 0.002 −0.001
MSE 0.072 0.013 0.006

4In practice, we never know the true distribution of the error term. Hence, we do not advise making any
correction to empirical studies. In any case, the issue of the location parameter of the error distribution would
only a�ect the constant.
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Figure 1: Gain in e�ciency for β1 varying g and h

The �gure reports the gain in e�ciency for β1 for various g and h (see text).
Results are shown for a sample size of 100 observations.
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4 Empirical application

In this section, we use the proposed methodology to study how AAA bond rates react to
changes in 10-year bond rates. As Nolan and Ojeda-Revah (2013), we select from the Federal
Reserve Board the rates for 10-year U.S. constant maturity bonds and AAA corporate bonds
for the time period 2002-2014.5 Week-to-week di�erences are computed and the di�erence
in AAA bond rates are regressed on the di�erence in 10-year bond rates. Table 3 shows
the summary statistics for residuals. We test normality with the Jarque-Bera test. The null
hypothesis (that data are normally distributed) is rejected at less than 1%. The distribution
of the residuals is heavy tailed and slightly skewed, which makes FML preferable to LS. The
FML-estimates of the intercept and of the slope are respectively: −0.002 and 0.756. Table 4

reports estimated parameters (β̂ββ and θ̂θθ
∗
) and the bootstrapped standard errors (in parentheses)

using FML.

Table 3: Summary statistics for residuals

# Obs. Mean Std. Dev. Skew. Kurt. Jarque-Bera test (p-value)

residuals 678 0.001 0.046 0.499 6.707 0.000

Table 4: Regression analysis using FML

β̂0
−0.002
(0.002)

β̂1
0.756⋆⋆⋆

(0.016)

ω̂
0.008⋆⋆⋆

(0.002)

ĝ
0.067
(0.049)

ĥ
0.170⋆⋆⋆

(0.028)

Bootstrapped standard errors (in paren-
theses). ⋆⋆⋆ signi�cant at 1%.

5 Conclusion

This paper introduces a �exible maximum likelihood regression estimator with Tukey g-and-h
distributed errors for linear regression. Simulations show that FML outperforms LS in terms
of e�ciency as soon as the error distribution departs from normality. This methodology can
be applied across a broad range of �nance and economic topics.

5Available online at www.federalreserve.gov/releases/h15/data.htm.
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