The Maturity of Sovereign Bond Issuance in the Euro Area

Roel Beetsma (UvA & European Fiscal Board)

Massimo Giuliodori (UvA & Tinbergen Institute)

Jesper Hanson (IMF & UvA)

Frank de Jong (Tilburg University)

Presentation ESM – December 11, 2018

Motivation and overview

> What determines debt maturity choice of govts. in Eurozone?

Eliciting policymakers' preferences from data on composition of debt stock is difficult – changes in maturity are slow-moving

Unique dataset of Eurozone sovereign debt auctions 1999-2017

New debt issuances provide opportunity to move maturity composition into preferred direction

Our debt auction data should provide information on maturity preferences

Motivation and overview

Start with theoretical framework with trade-off between short and long maturity in the face liquidity preference shocks, shocks to risk aversion and to repayment capacity (roll-over risk)

Relationship between maturity and yield curve

Study effects of underlying shocks to liquidity preference, risk aversion and repayment capacity

- Univariate regressions
- Panel vector auto-regression

- Combines approach Broner et al. (2013), which trades off higher cost of longer debt against lower roll-over risk, with adding liquidity services of short risk-free debt (Greenwood et al., 2015)
- ➢ Roll-over risk is relevant for euro-area:
 - CACs since 2013
 - Haircut 2012 privately-held Greek government debt
 - Ongoing discussions about sovereign debt restructuring framework

➤ Three periods: 0, 1, 2

Solution Government maximizes $U = E_0 \left[u(G_1) + \sum_{j=1}^{S} Pr(j=s)u(G_{2s}) \right]$

> Period 0, government can restructure debt subject to

$$P_{01}B_{01} + P_{02}B_{02} = P_{01}\overline{B_{01}} + P_{02}\overline{B_{02}}$$

Period 1 government budget constraint is

$$B_{01} + G_1 = P_{12}B_{12}$$

Period 2: government received exogenous fiscal revenues y

- $y = \bar{y}$ with probability $\pi > 0$ repaymenty = 0 with probability 1π default
- Utility international investor

$$U = C_0 + E_0[m_1C_1 + m_1m_2C_2] + v(B_{01})$$

> Zero risk-free rate in both periods: $E_0[m_1] = E_1[m_2] = 1$

Period 0 short-term debt is riskless:

$$P_{01} = E_0[m_1] + v'(B_{01}) = 1 + v'(B_{01}).$$

> Investors risk-neutral w.r.t. investment period 1:

$$P_{12} = \pi$$

➢ Price period-0 long bonds is $P_{02} = E_0[P_{12}m_1] = E_0[\pi m_1]$. With π and m_1 negatively correlated,

$$P_{02} = \sigma \pi_0,$$

Model: timing

Period 0: govt. chooses optimal maturity structure (B₀₁, B₀₂); investors choose bond holdings; prices short and long debt materialize.

- Period 1: prob. π of a good state in period 2 materializes; government determines period-1 public consumption; combined with amount maturing debt, this determines amount short debt issued in period 1.
- Period 2: state materializes; govt. repays as much debt as possible; remainder, if any, spent on public consumption.

Solution by working backward

Proposition 1

> Higher risk aversion (lower σ) produces in period 0:

- a shortening of the mature structure
- an upward shift in the yield curve level (fall in P_{01} and P_{02})
- no unambiguous effect on the slope can be established.

➢ Risk aversion ↑ → risk premium long bond ↑ → to restore equilibrium, liquidity services short debt ↑

Proposition 2

> Reduced expected repayment prob. π_0 leads in period 0 to:

- lengthening of the maturity structure
- increase in the yield curve slope (P_{01} rises, P_{02} falls)
- no unambiguous effect on the yield curve level can be established

➢ P2: π₀ ↓ → government less wealthy → relative risk aversion ↑ → given variance repayment probability around π₀, (exp.) marg. utility govt. in periods 1 and 2 is higher if $\pi < \pi_0 \rightarrow$ govt. issues more long debt to limit fluctuations in marginal utility

Proposition 3

Assume that $v(B_{01}) = \gamma f(B_{01})$ and suppose γ rises – then in period 0:

- the maturity structure shortens
- the slope of the yield curve increases (P_{01} rises, P_{02} remains unchanged)
- the yield curve level shifts down
- ➢ P3: marg. utility liquidity services ↑ → to restore optimal tradeoff, issue relatively more short

Data

- Sovereign debt auctions Germany, Netherlands, France, Italy, Spain, Belgium
- Period is 1 January 1999 tot 31 december 2017
- Selection of issues
 - Issues of maturity more than 1 year (distinction bill and bond issue; short debt used as bridge and shock buffer)
 - No foreign currency debt
 - No inflation linked debt
- > Quarterly weighted average maturity (WAM):

$$WAM_t = \frac{\sum_{m=2}^{50} m * AUC_S_{m,t}}{\sum_{m=2}^{50} AUC_S_{m,t}},$$

Weighted average maturity new debt issues

Secondary market yields

Relationship WAM – yield curve

Table 1: WAM and yield curve									
$WAM_{i,t} = c_i + \delta_i t + \mu \sum_{j=1}^{s} D_{j,t} + \beta_1 LEVEL_{i,t-1} + \beta_2 SLOPE_{i,t-1} + \varepsilon_{i,t}$									
	Germany	Netherlands	France	Belgium	Italy	Spain	Panel	Panel GNFB	Panel IS
β_1	-0.36***	-0.70	-0.46	-1.80**	-0.55***	-0.67**	-0.73***	-0.87***	-0.63***
β_2	-0.58*	-2.55**	-1.61***	-1.11	-0.47	-1.71***	-1.33***	-1.53***	-1.14***
Adj. R ²	0.35	0.085	0.14	0.17	0.13	0.24	0.32	0.32	0.32
Obs.	76	76	76	75	76	76	455	303	152

Notes: Estimation is for the period January 1, 1999 – December 31, 2017. Estimation method is Ordinary Least Squares (OLS) with Newey-West adjusted standard errors. The columns under the headers "Full panel", "Panel GNFB" and "Panel IS" report panel OLS regressions estimated with country fixed effects. Further, *, ** and *** denote significance at the 10%-, 5%-, and 1%-levels, respectively. Finally, "Panel GNFB" is the sub-panel formed by Germany, Netherlands, France and Belgium, and "Panel IS" is the sub-panel formed by Italy and Spain.

Explanatory variables

Relationship yield curve – underlying shocks

Table 4: Yield curve and underlying shock sources								
$Y_{i,t} = c_i + $	$Y_{i,t} = c_i + \delta_i t + \mu \sum_{i=1}^{s} D_{i,t} + \beta X_{i,t-1} + \varepsilon_{i,t}$							
$Y_{i,t} = LEVEL_{i,t}$ $Y_{i,t} = SLOPE_{i,t}$								
Full panel Panel GNFB Panel IS Full panel Panel GNFB Panel IS								
ST Safety	0.20***	0.016	0.50***	0.21***	0.18***	0.24***		
VSTOXX	-0.028***	-0.019***	-0.041***	0.0010	0.0029	00028		
Rating	0.026	0.40***	-0.038	-0.037***	0.15***	-0.053***		
MRO	0.57***	0.56***	0.56***	-0.20***	-0.22***	-0.19***		
Adj. R ²	0.87	0.94	0.72	0.65	0.64	0.64		
Obs.	450	300	150	450	300	150		

Notes: See Notes to Table 1.

Estimates

VSTOXX: downward level shift: against theory; no prediction about slope

- Better rating: predicts less steep slope: conflicting findings; no prediction about level
- ST Safety: bbb-aaa corporate debt; rise in level goes against theory; increase in slope in line with theory

Relationship WAM – underlying shocks

Table 5: WAM and underlying shock sources						
$WAM_{i,t} = c_i + \delta_i t + \mu \sum_{j=1}^{s} D_{j,t} + \beta X_{i,t-1} + \varepsilon_{i,t}$						
	Full panel	Panel GNFB	Panel IS			
ST Safety	-0.49***	-0.32	-0.62***			
VSTOXX	-0.0089	-0.032	0.025			
Rating	0.19	-0.62	0.22**			
MRO	-0.32**	-0.36*	-0.11			
Adj. R^2	0.31	0.33	0.22			
Obs.	449	299	150			

Notes: See *Notes* to Table 1.

>VSTOXX: theory predicts shortening – no evidence

> Better rating: theory predicts shortening – no evidence

>ST Safety: shortening in line with theory

Impulse response shock VSTOXX

Response to Cholesky One S.D. Innovations ± 2 S.E.

Impulse response positive rating shock

Response to Cholesky One S.D. Innovations ± 2 S.E.

Impulse response positive liquidity preference shock

Response to Cholesky One S.D. Innovations ± 2 S.E.

Concluding remarks

Dataset of new debt issues provides unique opportunity to elicit maturity preferences

- Theoretical framework trading off short and long maturity in face liquidity pref. shocks, shocks to risk aversion and rollover risk
- Strong negative link WAM and level and slope yield curve
- Mixed evidence shock sources liquidity preference seems most relevant

ADDITION SLIDES

Relationship WAM – yield curve: contemporaneous variables

Table 2: WAM and yield curve – contemporaneous explanatory variables									
WAM _{i,t}	$WAM_{i,t} = c_i + \delta_i t + \mu \sum_{j=1}^{s} D_{j,t} + \beta_1 LEVEL_{i,t} + \beta_2 SLOPE_{i,t} + \varepsilon_{i,t}$								
	Germany	Netherlands	France	Belgium	Italy	Spain	Panel	Panel GNFB	Panel IS
eta_1	-0.49***	0.075	-0.20	-2.01***	-0.43***	-0.63**	-0.62***	-0.77***	-0.55***
β_2	-0.97**	-2.12*	-1.41***	-2.47**	-0.42	-1.75***	-1.59***	-1.96***	-1.16***
Adj. R ²	0.37	0.072	0.10	0.21	0.075	0.23	0.32	0.33	0.30
Obs.	76	76	76	75	76	76	455	303	152

Notes: See *Notes* to Table 1.

Relationship WAM – yield curve: IV estimates

Table 3: Instrumental variables regression						
$WAM_{i,t} = c_i + \delta_i t + \mu \sum_{i=1}^{s} D_{j,t} + \beta_1 LEVEL_{i,t} + \beta_2 SLOPE_{i,t} + \varepsilon_{i,t},$						
	Full panel	Panel GNFB	Panel IS			
β_1	-0.94***	-1.26***	-0.50**			
β_2	-1.87***	-2.41***	-1.42***			
Adj. R ²	0.32	0.32	0.29			
Obs.	449	299	150			

Notes: Estimation method is Instrumental Variables (IV) regression with Newey-West adjusted standard errors, where $LEVEL_{i,t}$ and $SLOPE_{i,t}$ are instrumented with the first lags of the short-term safety premium, the VSTOXX, the credit rating and the interest rate on Main Refinancing Operations. Further, see *Notes* to Table 1.

Relationship WAM – yield curve: sample split

Table A.1: Split between before-crisis and crisis periods								
$WAM_{i,t} = \delta_i t + \mu \sum_{j=1}^{s} D_{j,t} + DPRE * (c_{1,i} + \beta_1 LEVEL_{i,t-1} + \beta_2 SLOPE_{i,t-1})$								
$+(1 - DPRE)(c_{2,i} + \gamma_1 L)$	$EVEL_{i,t-1} + \gamma S$	$SLOPE_{i,t-1}) + \varepsilon_{i,t}$						
	Quarterly							
	Full panel	Panel GNFB	Panel IS					
β_1	-0.17	-0.14	-0.18					
eta_2	-0.44	-0.35	-0.57					
γ_1	-0.50***	-0.40*	-0.60***					
γ_2	-0.78**	-0.57	-0.98**					
$\beta_1 = \gamma_1$	3.81*	1.12	4.89**					
$\beta_2 = \gamma_2$	0.28	0.063	0.32					
Joint test	2.21	0.61	2.91*					
Adj. R ²	0.36	0.36	0.31					
Obs.	455	303	152					

Notes: DPRE is a dummy with value 1 over the period January 1, 1999 – June 30, 2007. Further, see *Notes* to Table 1.

Correlations

Table A.2: Correlations between variables								
	VSTOXX	ST_SAFETY	RAT_BE	RAT_DE	RAT_ES	RAT_FR	RAT_IT	RAT_NL
VSTOXX	1.00							
ST_SAFETY	0.60	1.00						
RAT_BE	0.25	0.27	1.00					
RAT_DE	0.08	0.19	0.42	1.00				
RAT_ES	0.22	0.14	0.91	0.51	1.00			
RAT_FR	0.26	0.28	0.84	0.49	0.85	1.00		
RAT_IT	0.26	0.14	0.88	0.52	0.97	0.92	1.00	
RAT_NL	0.08	0.19	0.42	1.00	0.51	0.49	0.52	0.90

Notes: Correlation at monthly frequency. The credit rating instruments are relative credit ratings. "RR_X" denotes the relative credit rating of country X.

Yield curve and shocks: KfW Bund spread

Table A.4: Yield curve and underlying shock sources – KfW-Bund spread replaces short-term safety premium

$Y_{i,t} = c_i + \delta_i t + \mu \sum_{j=1}^{s} D_{j,t} + \beta X_{i,t-1} + \varepsilon_{i,t}$							
$Y_{i,t} = LEVEL_{i,t}$ $Y_{i,t} = SLOPE_{i,t}$							
	Full panel	Panel GNFB	Panel IS	Full panel	Panel GNFB	Panel IS	
KfW spread	0.80***	-0.27	2.72***	1.44***	1.19***	1.70***	
VSTOXX	-0.026***	-0.021***	-0.039**	0.0027	0.0037	-0.0012	
Rating	-0.018	0.34***	-0.029	-0.015	0.36***	-0.029	
MRO	0.36***	0.46***	0.20	-0.29***	-0.28***	-0.27***	
Adj. R ²	0.86	0.95	0.70	0.73	0.75	0.70	
Obs.	282	188	94	282	188	94	

Notes: See *Notes* to Table 1.

WAM and shocks: KfW Bund spread

Table A.5: WAM and underlying shock sources – KfW-								
Bund spread replaces ST and LT Safety variables								
$WAM_{i,t} = c_i + \delta_i$	$WAM_{i,t} = c_i + \delta_i t + \mu \sum_{i=1}^{s} D_{i,t} + \beta X_{i,t-1} + \varepsilon_{i,t}$							
Quarterly								
Full Panel Panel GNFB Panel IS								
KfW	-3.34***	-3.27**	-3.21**					
VSTOXX	-0.012	-0.025	0.020					
Rating	0.31**	-0.27	0.29*					
MRO	-0.099	-0.32	0.30					
Adj. R ²	0.41	0.45	0.19					
Obs.	282	188	94					

Notes: See *Notes* to Tables 1.