Risk Management Optimization for Sovereign Debt Financing

Stavros A. Zenios
University of Cyprus
Bruegel
Wharton Financial Institutions Center

Andrea Consiglio, University of Palermo

M. Athanasopoulou, A. Erce, A. Gavilan, E. Moshammer
European Stability Mechanism

Some history

- Consiglio and Zenios (January 2015)
 The devil is in the tails, //Voxeu.org.

- Consiglio and Zenios (2016)
Research issues

- Deterministic DSA
- Stochastic DSA

Uncertainty

Risk management and optimized funding

DSA with optimal debt financing
Contributions

Q1 Represent uncertainty
Q2 Risk measurement
Q3 Risk optimization of debt financing

1 Scenario trees
2 Introduce a risk measure
3 Simultaneously model debt stock and flow
4 Endogenous feedback of debt stock on flow
5 Optimize tradeoffs risk vs cost, and stock vs flow
Q2. Risk management for debt financing

- Risk management has not been part of analysis.

- Missing normative models capturing complex tradeoffs.
- Account for the reaction of the PDMO.
- Optimization normalizes the test of forecasting modules.
Q2. Risk management for debt financing

The Wealth of Nations: Governments Can Better Manage What They Own and Owe
Sovereign output Y_t, primary balance PB_t, debt stock D_{t-1}

Model the optimal choice of debt financing variables X_t
The economic problem

- **Flow dynamics**

\[GFN_t = i_{t-1}D_{t-1} + A_t - PB_t \]

- **Debt financing equation**

\[\sum_{j=1}^{J} X_t(j) = GFN_t \]

- **Endogenous premia**

\[r_t(j) = r_{ft} + \rho(d_t, j) \]

- **Effective Interest Rate**

\[i_t = \frac{i_{t-1}(D_{t-1} - A_t) + \sum_{j=1}^{J} r_t(j)X_t(j)}{D_t} \]
The economic problem

- Feedback loop

 \[X \rightarrow D \rightarrow r \rightarrow X \]

- Uncertain correlated \(Y_t, PB_t, r_{ft} \)
Q1. Modeling uncertainty

- **First innovation: Scenario tree**

- **Compact moment matching representation**
- **Discrete state- and time-space**
Q1. Modeling uncertainty

- **First innovation: debt stock scenario dynamics**
 \[D^n = (1 + r^{a(n)})D^{a(n)} - PB^n (+SF^n) \]

- Scenario dependent GDP
 \[d^n = D^n/Y^n \]
 \[gfn_t^n = GFN_t^n/Y_t^n \]
 \[pb^n = PB^n/Y^n \]

- \(D^n\) is term structure of debt
- \(r^n\) is term structure of sovereign rates

Scenario tree integrates economic and financial risk factors, using objective and risk neutral probabilities.
(Consiglio, Carollo, Zenios, *Quantitative Finance*, 16:201-212, 2016.)
Q1. Modeling uncertainty

(a) Risk-free rates

(b) GDP growth

(c) Primary balance
Q2. Risk measurement

- Scenario dynamics of debt
Q2. Risk measurement

Second innovation: Conditional Flow at Risk (CFaR)

\[
\Psi(gfn) = \mathbb{E}(gfn \mid gfn \geq gfn^\circ)
\]

Rockafellar and Uryasev (2000, 2002)

\[
\Psi(gfn) = gfn^\circ + \frac{1}{1 - \alpha} \sum_{n \in \mathcal{N}} p^n z^n
\]

\[z^n \geq gfn_t^n - gfn^\circ, \quad z^n \geq 0\]
Q3. Risk optimization of debt financing

- Sovereign issues debt $X^n(j)$ to finance its debt

\[NIP^n_t = l^n_t + \sum_{m \in P(n)} \sum_{j=1}^{J} X^m_{\tau(m)}(j) CF^n_t(j, m) \]

(NIP/D is the effective interest rate of debt)

- Model (partial)

\[\text{Minimize}_{X} \sum_{n \in N} p^n NIP^n_t \]

s.t.

\[\Psi(gfn) \leq \omega \]
What about \textit{debt stock} dynamics?

\[D^n_t = D^{a(n)}_{t-1} + GFN^n_t - \sum_{m \in \mathcal{P}(n)} \sum_{j=1}^{J} X^m_{\tau(m)}(j) \mathbb{1}^n(j, m) - A^n_t \]
Q3. Risk optimization of debt financing

Third innovation: Endogeneity of interest rates

\[r^n_t(j) = r^n_{ft} + \rho(d^n_t, j) \]

\[\rho(d^n_t, j) = a_j + (1 + b_j)\hat{\rho}(d^n_t). \]
Q3. Risk optimization of debt financing

Model: Optimize policy design

- Cost and risk tradeoffs
- Stock and flow tradeoffs
- Sustainability

Minimize

$$\sum_{n \in N} p^n NIP^n$$

s.t.

$$\Psi(gfn) \leq \omega$$

$$\frac{\partial d^n}{\partial t} \leq \delta$$

- Gross financing needs bounded by ω
- Pace of debt decrease $\delta < 0$ or debt increase $\delta > 0$
- Thresholds
Q3. Risk optimization of debt financing

1. **Conservative**
 Constrain the ratio for all states of the economy, i.e.,
 \[gfn^n \leq \omega, \text{ for all } n \in N_t, \ t \in T \]

2. **Risk neutral**
 Constrain the expected value of the ratio, i.e.,
 \[E[gfn^n \mid n \in N_t] \leq \omega, \text{ for all } t \in T \]

3. **Risk adjusted CFaR constrained**

Q3. Risk optimization of debt financing

To recap

1. Scenario dynamics for both *debt stock* and *flow*
2. Risk measure
3. Interest rate endogeneity
4. Dynamic debt financing decisions

Climb-down

- Dynamic mix (time and state dependent)
- Adaptive fixed mix (time dependent, state invariant)
- Simple fixed mix rules (time and state invariant)
Q3. Risk optimization of debt financing

The relevance of optimizing

![Graph showing risk optimization of debt financing](image)

- **Dynamic**
- **Adaptive fixed mix**
- **Fixed Mix**
Q3. Risk optimization of debt financing

Tradeoff debt stock and debt flow
Q3. Risk optimization of debt financing

Additional fiscal effort and debt sustainability

\[
\sum_{j=1}^{J} X_t^n(j) + u_t Y_t^n \geq GFN_t^n.
\]
Q3. Risk optimization of debt financing

- Lesson 1. Risk management comes with a cost
- Lesson 2. Trading off debt flow and stock dynamics
- Lesson 3. Trade-offs are economically significant
- Lesson 4. Cost savings from optimization increase as risk tolerance declines
- Lesson 5. Optimizing renders less volatile financing needs but weighs on debt stock dynamics
- Lesson 6. Optimizing helps more when the stock of legacy debt is larger and its maturity shorter
- Lesson 7. Feedback from debt stock into interest rates affects risk management
Conclusions

- Rich framework for studying sovereign debt sustainability
 - Stochastic debt stock and flow dynamics
 - Coherent risk measure
 - Endogenous interest rates
 - Optimal fiscal stance
- Capture and quantify complex tradeoffs
- Replicate stylized model from economic literature: gambling for redemption (Conesa and Kehoe), cost of delays (Blanchard)
- Extension of feedback loop
 \[X \rightarrow D \rightarrow r \rightarrow Y \rightarrow PB \rightarrow X \]
